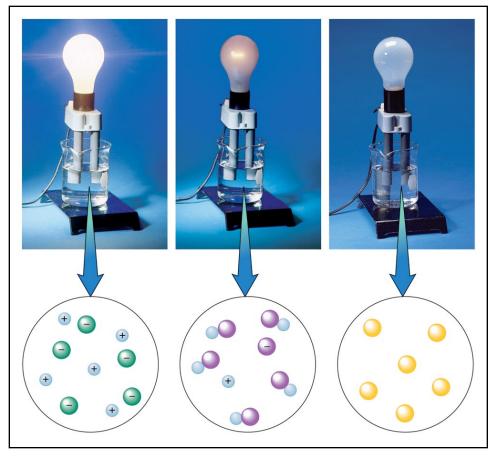
Aqueous Reactions

(Solutions/ Molarity)

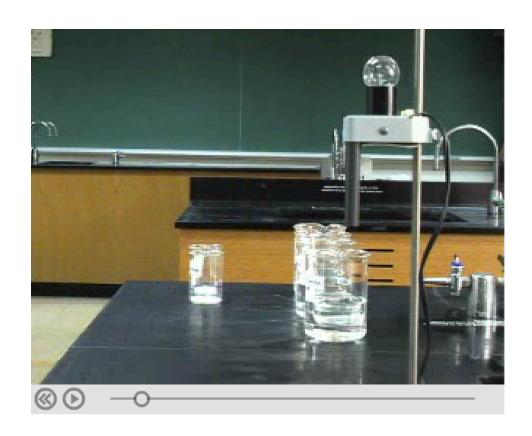
Electrolytes


Dr. Ron Rusay

Electrolytes Ions in an aqueous (water) solution

- Pure Water does not conduct electricity.
- A water solution must have **ions** to conduct electricity.
- Aqueous solutions can be categorized into 3 types: non-electrolytes, strong electrolytes or weak electrolytes based on their ability to conduct electricity in a homogeneous aqueous solution (aq).
- Aqueous solutions can be tested for conductivity which will determine the degree of ionization of the solute, that is, the substance dissolved in water.
- It is possible to have full or partial ionization.

Solution Test Apparatus for Electrolytes (Ions)


Conductivity depends on the amount of ions in solution

strong

weak

non-

Conductivity

http://chemconnections.org/general/movies/html-swf/electrolytes.htm

Molarity (M) = moles solute / Liter solution

Electrolytes

- Almost all ionic compounds and a few molecular compounds are strong electrolytes.
- Several molecular compounds are weak conductors, most are non-conductors.
- Conductivity is directly related to the amount of ionization, i.e. ions in solution. Table salt, sodium chloride, is completely ionized:

$$NaCl_{(s)} + H_2O_{(l)} \longrightarrow NaCl_{(aq)} \longrightarrow 0.10M$$
 $Na^+_{(aq)} + Cl^-_{(aq)}$
 $O.10M$
 $O.10M$
 $O.10M$

Add 5.8g of sodium chloride to water to make 1.0 L of solution = 0.10M= 0.10 mol/L

All of the sodium chloride ionizes to make 1.0 L of solution = $0.10 M Na^+$ and $0.10 M Cl^-$

Molarity (M) = moles solute / Liter solution

Electrolytes

o Concentrations:

$$CaCl_{2(s)} + H_2O_{(l)} \rightarrow CaCl_{2(aq)} \rightarrow 0.10M$$

$$Ca^{2+}_{(aq)} + 2Cl_{(aq)}$$

$$0.10M \quad 0.20M$$

How many grams of calcium chloride (MM = 111 g/mol) should be added to water to make 1.00 L of a 0.10M solution of calcium chloride?

How many grams of calcium chloride (MM = 111 g/mol) should be added to water to make 1.00 L of a solution having 0.10M chloride ion?

QUESTION

If an antacid contains Al(OH)₃ it will form AlCl₃ upon neutralization of stomach acid. How many moles of Clions are in 100.0 mL of 0.010 M AlCl₃?

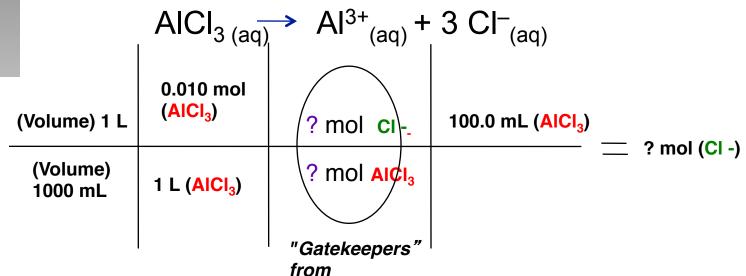
A.0.0010 mol

B.0.010 mol

C.0.0030 mol

D.0.030 mol

Molarity (M) = moles AlCl₃ / Liter solution


 $mol AlCl_3 = Molarity AlCl_3 \times Volume solution (L)$

AICI₃ dissociates into 3 moles of Cl⁻.

Calculations Reactant → **Product**

moles (Reactant) — moles (Product)

AlCl₃ dissociates into 3 moles of Cl⁻.

Balanced reaction

Molarity (M) = moles solute / Liter solution

Electrolytes

Sugars like sucrose are non-ionic, molecular compounds that dissolve but produce no ions.

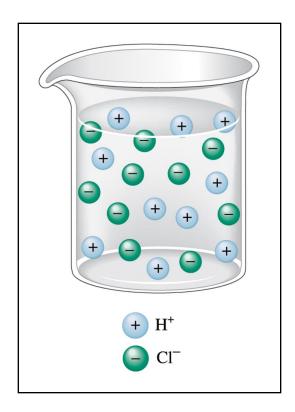
$$C_{12}H_{22}O_{11}(S) + H_2O_{(I)} \longrightarrow C_{12}H_{22}O_{11}(AQ)$$

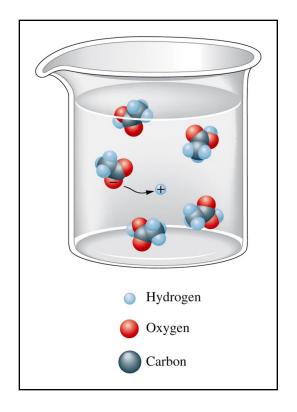
Some molecular compounds like acetic acid ionize partially (dissociate) in water

$$HC_2H_3O_{2(l)} + H_2O_{(l)} \rightarrow H_3O_{(aq)}^+ + O.1000M$$
 $C_2H_3O_2^{-}_{(aq)}$

$$0.09987M \qquad \Longleftrightarrow \qquad 0.00013M$$

$$Acetic Acid (HC_2H_3O_2)$$


NOT Completely Ionized Example of equilibrium


Conductivity

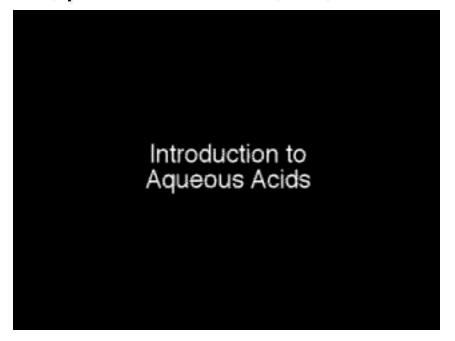
Which of these solutions will have highest conductivity?

A	В	C
0.1 M KCl _(aq)	0.2 M HCl _(aq)	0.3 M $HC_2H_3O_{2(aq)}$

HCl Completely Ionized

Acetic Acid $(HC_2H_3O_2)$

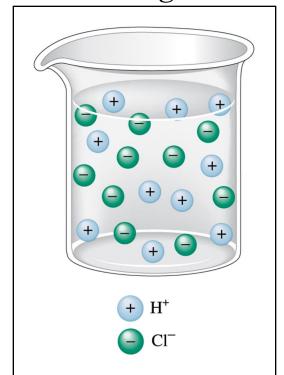
Conductivity

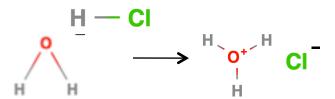

Which of these solutions will have highest conductivity?

A	В	C
0.1 M HCl _(aq)	0.1 M CaCl _{2 (aq)}	0.2 M $HC_2H_3O_{2(aq)}$

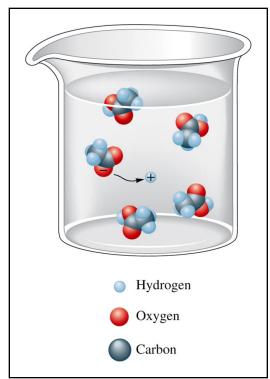
Aqueous Acids

Any compound that provides a proton can be considered an acid. Strong acids are sulfuric acid, nitric acid, perchloric acid, HI, HBr and HCl.




Electrolytes

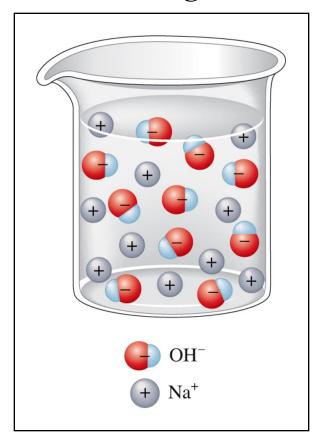
Mow would the conductivity of acetic acid compare to hydrochloric acid?


strong

HCl
Completely Ionized

weak

Acetic Acid (HC₂H₃O₂) **NOT** Completely Ionized Example of equilibrium

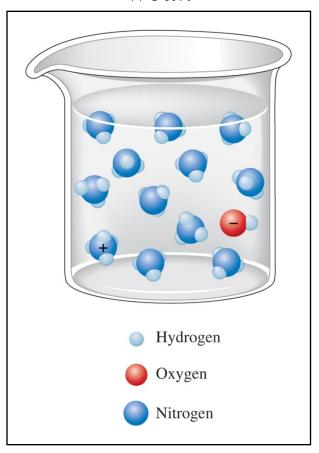

Aqueous Bases

- Any compound that accepts a proton is a base.
- The common bases are group IA & IIA metal hydroxide compounds. They are strong bases, dissociating completely in water.
- ♠ An example of a weak base is ammonia.

$$NH_{3(g)} + H_2O_{(I)} \stackrel{\longleftarrow}{\longrightarrow} NH_{3(aq)} \stackrel{\longleftarrow}{\longrightarrow} NH_4^+_{(aq)} + OH_{(aq)}^-$$

Consider that aqueous ammonia is in equilibrium with ammonium hydroxide. The names have often been used interchangeably.

strong



An Aqueous Solution of Sodium Hydroxide

$$NaOH_{(aq)} \rightarrow Na^{+}_{(aq)} + OH^{-}_{(aq)}$$

Completely Ionized

weak

An Aqueous Solution of Ammonia

$$NH_{3(aq)} \stackrel{\longleftarrow}{\rightarrow} NH_{4(aq)}^{+} + OH_{(aq)}^{-}$$

NOT Completely Ionized Example of equilibrium

Lysergic acid

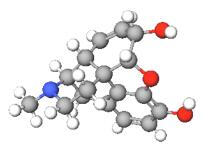
Selected Acids and Bases

Acids

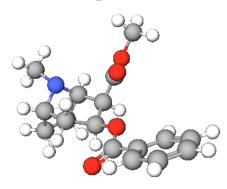
Strong

Hydrochloric acid, HCI Hydrobromic acid, HBr Hydriodic acid, HI Nitric acid, HNO₃ Sulfuric acid, H₂SO₄ Perchloric acid, HCIO₄

Hydrofluoric acid, HF Phosphoric acid, H₃PO₄ Acetic acid, CH₃COOH (or HC₂H₃O₂)


Bases

Strong


Sodium hydroxide, NaOH Potassium hydroxide, KOH Calcium hydroxide, Ca(OH)₂ Strontium hydroxide, Sr(OH)₂ Barium hydroxide, Ba(OH)₂

Weak

Ammonia, NH₃

Morphine

Cocaine

Dopamine

Acetic acid

QUESTION

All of the following are weak acids *except*:

- A) HCNO.
- B) HBr.
- C) HF.
- D) HNO_2 .
- E) HCN.