| Aqueous Solutions
 Concentration / Calculations |
| :---: | :---: |
| Dr. Ron Rusay |
| |
| |

Solutions
"Homogeneous solutions are comprised of
solute(s), the substance(s) dissolved, [The lesser
amount of the component(s) in the mixture], and
aslvent, the substance present in the largest
amount.
- Solutions with less solute dissolved than is
physically possible are referred to as "unsaturated".
Those with a maximum amount of solute are
"saturated".
- Occasionally there are extraordinary solutions that
are "supersaturated" with more solute than normal.

QUESTION

An unknown substance dissolves readily in water but not in benzene (a nonpolar solvent). Molecules of what type are present in the substance?
a) neither polar nor nonpolar
b) polar
c) either polar or nonpolar
d) nonpolar
e) none of these

Salt dissolving in a glass of water

Refer to Lab Manual \& Workshop:

Solution Concentrations

Refer to Lab Manual

- A solution's concentration is the measure of the amount of solute dissolved.
- Concentration is expressed in several ways. One way is mass percent.
Mass \% = Mass solute / [Mass solute + Mass solvent] x100
- What is the mass \% of 65.0 g of glucose dissolved in 135 g of water?
Mass $\%=65.0 \mathrm{~g} /[65.0+135] \mathrm{g} \times 100$ $=32.5 \%$

Solution Concentration

- Concentration is expressed more importantly as molarity (M).
Molarity $(M)=$ Moles solute $/$ Liter (Solution)

QUESTION

$20.0-\mathrm{g}$ of $\mathrm{HF}[\mathrm{MM}=20.0 \mathrm{~g} / \mathrm{mol}]$ was dissolved in water to give $2.0 \times 102 \mathrm{~mL}$ of $\mathrm{HF}(\mathrm{aq})$, a weak acid solution. The concentration of the solution is:
a) 1.0 M
b) 3.0 M
c) 0.10 M
d) 5.0 M
e) 10.0 M

QUESTION

Solutions: molarity \& volume \rightarrow mass
How many grams of NaCl are contained in 350. mL of a 0.250 M solution of sodium chloride?
A) 41.7 g
B) 5.11 g
C) 14.6 g
D) 87.5 g
E) None of these

QUESTION

A 51.24-g sample of $\mathrm{Ba}(\mathrm{OH}) 2[\mathrm{MM}=171.3$ $\mathrm{g} / \mathrm{mol}]$ is dissolved in enough water to make 1.20 liters of solution. What is the molarity of the solution?
a) 0.300 M
b) 3.33 M
c) 0.278 M
d) $2.49 \times 10-1 \mathrm{~mol} / \mathrm{L}$
e) $42.7 \mathrm{~g} / \mathrm{mL}$

QUESTION

What volume of 18.0 M sulfuric acid must be used to prepare 15.5 L of $0.195 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$?
A) 168 mL
B) 0.336 L
C) 92.3 mL
D) 226 mL
E) None of these

Solution Dilution

QUESTION

What happens to the number of moles of $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$ (sucrose) when a 0.20 M solution is diluted to a final concentration of 0.10 M ?
A) The number of moles of $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$ decreases.
B) The number of moles of $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$ increases.
C) The number of moles of $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$ does not change.
D) There is insufficient information to answer the question.

QUESTION

A 51.24-g sample of $\mathrm{Ba}(\mathrm{OH}) 2$ is dissolved in enough water to make 1.20 liters of solution. How many mL of this solution must be diluted with water in order to make 1.00 liter of 0.100 molar $\mathrm{Ba}(\mathrm{OH}) 2$?
a) $400 . \mathrm{mL}$
b) 333 mL
c) 278 mL
d) $1.20 \times 103 \mathrm{~mL}$
e) 285 mL

Solution Applications

20.00 mL of a $\boldsymbol{M}_{2}=0.010000 \mathrm{M}$ barium chloride solution required 15.50 mL of the potassium sulfate solution to react completely. $\boldsymbol{M}_{\text {K } 2 \mathrm{sO4}}=$?
$\mathrm{BaCl}_{2}(\mathrm{aq})+\mathrm{K}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow$? + ?
$\mathrm{BaCl}_{2}(\mathrm{aq})+\mathrm{K}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow 2 \mathrm{KCl}(\mathrm{aq})+\mathrm{BaSO}_{4}(\mathrm{~s})$

$? M_{\text {K } 2 S O 4} \stackrel{0.010000 \mathrm{~mol}_{\mathrm{BaCl}} \times 0.02000 L_{\mathrm{B}_{2} \mathrm{Cl}} \times 1 \mathrm{~mol}_{\text {K2SO4 }}}{ }$ \qquad
? $\boldsymbol{M}_{\text {K2SO4 }}=0.01290$ mol $_{\text {K2SO4 }} / L_{\text {K2SO4 }}=0.01290 \boldsymbol{M}_{\text {K2SO4 }}$

Solution Applications

How many grams of potassium chloride are produced?
$\mathrm{BaCl}_{2}(\mathrm{aq})+\mathrm{K}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \quad ? \quad+\quad$?
$1 \mathrm{BaCl}_{2}(\mathrm{aq})+\mathrm{K}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow 2 \mathrm{KCl}(\mathrm{aq})+\mathrm{BaSO}_{4}(\mathrm{~s})$
 $74.55 \mathrm{~g}_{\mathrm{Kc} 1} / \mathrm{mol}_{\mathrm{KCl}}$
$=0.02982 \mathrm{~g}_{\mathrm{Kcl}}$

QUESTION

What mass of NaOH is required to react exactly with 25.0 mL of $1.2 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$?
A) 1.2 g
B) 1.8 g
C) 2.4 g
D) 3.5 g
E) None of these

