

Molarity $(M)=$ Moles solute $/$ Liter solution
Electrolytes
Sugars like sucrose are non-ionic, molecular compounds that dissolve but produce no ions.

$$
\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11(\mathrm{~s})}+\mathrm{H}_{2} \mathrm{O}_{(l)} \rightarrow \mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11(\mathrm{aq})}
$$

Some molecular compounds like acetic acid ionize partially (dissociate) in water

$$
\begin{array}{cc}
\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2(1)} & +\mathrm{H}_{2} \mathrm{O}_{(l)}^{\leftrightarrows} \\
0.1000 \mathrm{M} & \mathrm{H}_{3} \mathrm{O}_{(a q)}^{+} \\
0.9987 \mathrm{M} & \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O} \\
\hline
\end{array}
$$

QUESTION

All of the following are weak acids except:
A) HCNO .
B) HBr .
C) HF .
D) HNO_{2}.
E) HCN .

QUESTION

If an antacid contains $\mathrm{Al}(\mathrm{OH})_{3}$ it will form AlCl_{3} upon neutralization of stomach acid. How many moles of Cl^{-} ions are in 100.0 mL of $0.010 \mathrm{M} \mathrm{AlCl}_{3}$?
A. 0.0010 M
B. 0.010 M
C. 0.0030 M
D. 0.030 M

Molarity $(M)=$ Moles solute / Liter solution

QUESTION

In the balanced molecular equation for the neutralization of sodium hydroxide with sulfuric acid, the products are:
A) $\mathrm{NaSO}_{4}+\mathrm{H}_{2} \mathrm{O}$
B) $\mathrm{NaSO}_{3}+2 \mathrm{H}_{2} \mathrm{O}$
C) $2 \mathrm{NaSO}_{4}+\mathrm{H}_{2} \mathrm{O}$
D) $\mathrm{Na}_{2} \mathrm{~S}+2 \mathrm{H}_{2} \mathrm{O}$
E) $\mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$

QUESTION

Given the insoluble compound $\mathrm{Al}_{2}\left(\mathrm{CO}_{3}\right)_{3}$ predict the ions and coefficients that would be necessary to complete the following net ionic equation:
\qquad $+$ \qquad $\rightarrow \mathrm{Al}_{2}\left(\mathrm{CO}_{3}\right)_{3}$
A. $2 \mathrm{AlCl}_{3}+3 \mathrm{Na}_{2} \mathrm{CO}_{3}$ also include 6 NaCl on right B. $3 \mathrm{Al}^{3+}+2 \mathrm{CO}_{3}{ }^{2-}$
C. $2 \mathrm{Al}^{3+}+3 \mathrm{CO}_{3}^{2-}$
D. $2 \mathrm{Al}^{3+} 6 \mathrm{Cl}^{-}+3 \mathrm{CO}_{3}{ }^{2-}+6 \mathrm{Na}^{+}$

Aqueous Reactions: Precipitation
Net Ionic Equations
$\mathrm{Na}_{2} \mathrm{SO}_{4(a q)}+2 \mathrm{AgNO}_{3(a q)} \mathrm{Ag}_{2} \mathrm{SO}_{4(\mathrm{~s})}+2 \mathrm{NaNO}_{3(a q)}$
Overall Ionic Reaction:
$2 \mathrm{Na}^{+}{ }_{(a q)}+\mathrm{SO}_{4}{ }^{2-}{ }_{(a q)}+2 \mathrm{Ag}^{+}{ }_{(a q)}+2 \mathrm{NO}_{3}{ }^{1-}{ }_{(a q)} \longrightarrow$
$2 \mathrm{Na}^{+}{ }_{\text {(aq) }}+\mathrm{Ag}_{2} \mathrm{SO}_{4(\mathrm{~s})}+2 \mathrm{NO}_{3}{ }^{1-}($ aq $)$
Net Ionic Equation: (Subtract Spectator lons)

$\begin{array}{ll}M \times V_{\text {solution }}=\mathrm{mol} \quad= & M_{\text {Na2SO4 }} \times V_{\text {Na2SO4 }} / 1: 1 \text { stoichiometry } \\ & =0.10 M \times 0.050 \mathrm{~L} 1 \\ & =0.0050 \mathrm{~mol}\end{array}$

QUESTION

The net ionic equation for the reaction of aluminum sulfate and sodium hydroxide contains which of the following species?
A) $3 \mathrm{Al}^{3+}(\mathrm{aq})$
B) $\mathrm{OH}^{-}(\mathrm{aq})$
C) $3 \mathrm{OH}^{-}(\mathrm{aq})$
D) $2 \mathrm{Al}^{3+}(\mathrm{aq})$
E) $2 \mathrm{Al}(\mathrm{OH})_{3}(\mathrm{~s})$

QUESTION

Which of the following salts is insoluble in water?
A) $\mathrm{Na}_{2} \mathrm{~S}$
B) $\mathrm{K}_{3} \mathrm{PO}_{4}$
C) $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$
D) CaCl_{2}
E) All of these are soluble in water.

QUESTION

If you began a reaction with the following ions in solution (all would be written with an (aq) subscript how would you represent the proper final net ionic equation? (Consult a solubility Table.)

$$
6 \mathrm{Na}^{+}+2 \mathrm{PO}_{4}{ }^{3-}+3 \mathrm{Fe}^{2+}+6 \mathrm{NO}_{3}^{-} \rightarrow
$$

A. $3 \mathrm{Na}^{+}+\mathrm{PO}_{4}{ }^{3-}+\mathrm{Fe}^{2+}+2 \mathrm{NO}_{3}{ }^{-} \rightarrow \mathrm{No}$ Reaction
B. $6 \mathrm{Na}^{+}+2 \mathrm{PO}_{4}{ }^{3-}+3 \mathrm{Fe}^{2+}+6 \mathrm{NO}_{3}{ }^{-} \rightarrow \mathrm{Fe}_{3}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{~s})+6 \mathrm{NaNO}_{3}$
C. $3 \mathrm{Na}^{+}+\mathrm{PO}_{4}{ }^{3-}+\mathrm{Fe}^{2+}+2 \mathrm{NO}_{3}^{-} \rightarrow \mathrm{Fe}_{3}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{~s})+6 \mathrm{Na}^{+}+6 \mathrm{NO}_{3}^{-}$
D. $2 \mathrm{PO}_{4}{ }^{3-}+3 \mathrm{Fe}^{2+} \rightarrow \mathrm{Fe}_{3}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{~s})$

Oxidation Reduction Reactions

QUESTION

In a redox reaction, oxidation and reduction must both occur. Which statement provides an accurate premise of redox chemistry?
A.The substance that is oxidized must be the oxidizing agent. B.The substance that is oxidized must gain electrons.
C.The substance that is oxidized must have a higher oxidation number afterwards.
D.The substance that is oxidized must combine with oxygen.

QUESTION

In which of the following does nitrogen have an oxidation state of +4 ?
A. HNO_{3}
B. NO_{2}
C. $\mathrm{N}_{2} \mathrm{O}$
D. $\mathrm{NH}_{4} \mathrm{Cl}$
E. NaNO_{2}

