

Chemical Equilibrium

-The reactions considered until now have had reactants react completely to form products. These reactions "went" only in one direction.
-Some reactions can react in either direction. They are "reversible". When this occurs some amount of reactant(s) will always remain in the final reaction mixture.

Chemical Equilibrium

(Definitions)

- A chemical system where the concentrations of reactants and products remain constant over time.
- On the molecular level, the system is dynamic: The rate of change is the same in either the forward or reverse directions.

Dynamic Equilibrium

"The Pennies"

- Organize into groups of 4.
- Dr. R will provide your group with a number and an accounting form.
- In your group, select one person as:

1) Money Keeper
2) Recorder
3) Transfer Agent
4) Auditor
-Have the Recorder put everyone's name on the accounting
form.

- After recording all of the names send the Money Keeper
to see Dr. R. for your capital stake.
- Await instructions for phase I.

QUESTION

The changes in concentrations with time for the reaction $\mathrm{H}_{2} \mathrm{O}(g)+\mathrm{CO}(g) \leftrightarrows \mathrm{H}_{2}(g)+\mathrm{CO}_{2}(g)$ are graphed below when equimolar quantities of $\mathrm{H}_{2} \mathrm{O}(g)$ and $\mathrm{CO}(g)$ are mixed.

Which of the comments given here accurately apply to the concentration versus time graph for the $\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}$ reaction?
A. The point where the two curves cross shows the concentrations of reactants and products at equilibrium.
B. The slopes of tangent lines to each curve at a specific time prior to reaching equilibrium are equal, but opposite, because the stoichiometry between the products and reactants is all $1: 1$
C. Equilibrium is reached when the $\mathrm{H}_{2} \mathrm{O}$ and CO curves (green) gets to the same level as the CO_{2} and H_{2} curves (red) begin.
D. The slopes of tangent lines to both curves at a particular time indicate that the reaction is fast and reaches equilibrium.

Chemical Equilibrium

$$
\mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) \rightleftharpoons 2 \mathrm{NH}_{3}(g)
$$

Add nitrogen and hydrogen gases together in any proportions. Nothing noticeable occurs. Add heat, pressure and a catalyst, you smell ammonia => a mixture with constant concentrations of $\mathrm{N}_{2}, \mathrm{H}_{2}$ and NH_{3} is produced.
Start with just ammonia and catalyst. N_{2} and H_{2} will be produced until a state of equilibrium is reached.
As before, a mixture with constant concentrations of nitrogen, hydrogen and ammonia is produced.

Chemical Equilibrium

$\mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) \rightleftharpoons 2 \mathrm{NH}_{3}(g)$

No matter what the starting composition of reactants and products, the same ratio of concentrations is realized when equilibrium is reached at a certain temperature and pressure.

QUESTION

This is a concentration profile for the reaction $\mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) \leftrightarrows 2 \mathrm{NH}_{3}(g)$ when only
$\mathrm{N}_{2}(\mathrm{~g})$ and $\mathrm{H}_{2}(\mathrm{~g})$ are mixed initially.

The figure shown here represents the concentration versus time relationship for the synthesis of ammonia $\left(\mathrm{NH}_{3}\right)$. Which of the following correctly interprets an observation of the system?
A. At equilibrium, the concentration of NH_{3} remains constant even though some is also forming N_{2} and H_{2}, because some N_{2} and H_{2} continues to form NH_{3}
B The NH_{3} curve (red) crosses the N_{2} curve (blue) before reaching equilibrium
because it is formed at a slower rate than N_{2} rate of use.
C. All slopes of tangent lines become equal at equilibrium because the reaction All slopes of tangent lines beco
began with no product $\left(\mathrm{NH}_{3}\right)$.
D. If the initial N_{2} and H_{2} concentrations were doubled from what is shown here, the final positions of those curves would be twice as high, but the NH_{3} curve would be the same.

QUESTION

One of the environmentally important reactions involved in acid rain production has the following equilibrium expression.
From the expression, what would be the balanced chemical reaction?
Note: all components are in the gas phase.

$$
\mathrm{K}=\left[\mathrm{SO}_{3}\right] /\left(\left[\mathrm{SO}_{2}\right]\left[\mathrm{O}_{2}\right]^{1 / 2}\right)
$$

$\mathrm{A} . \mathrm{SO}_{3}(\mathrm{~g}) \leftrightarrows \mathrm{SO}_{2}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g})$
B. $\mathrm{SO}_{3}(\mathrm{~g}) \leftrightarrows \mathrm{SO}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g})$
C. $\mathrm{SO}_{2}(g)+2 \mathrm{O}_{2}(\mathrm{~g}) \leftrightarrows \mathrm{SO}_{3}(\mathrm{~g})$
D. $\mathrm{SO}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \leftrightarrows \mathrm{SO}_{3}(\mathrm{~g})$

Equilibrium Expression

$4 \mathrm{NH}_{3}(\mathrm{~g})+7 \mathrm{O}_{2}(\mathrm{~g}) \leftrightarrow 4 \mathrm{NO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ Write the Equilibrium Expression for the reaction. The expression will have either concentration units of $\mathrm{mol} / \mathrm{L}(M)$, or units of pressure (atm) for the reactants and products. What would be the overall unit for K using Molarity and atm units respectively.

$$
K=\frac{\left[\mathrm{NO}_{2}\right]^{4}\left[\mathrm{H}_{2} \mathrm{O}\right]^{6}}{\left[\mathrm{NH}_{3}\right]^{4}\left[\mathrm{O}_{2}\right]^{7}}
$$

K^{\prime} 's units $=M^{-1}=L / \mathrm{mol}$ or atm ${ }^{-1}$

Equilibrium Expressions

a 1) If a reaction is re-written where the reactants become products and products-reactants, the new Equilibrium Expression is the reciprocal of the old.

$$
K_{\text {new }}=1 / K_{\text {original }}
$$

a2) When the entire equation for a reaction is multiplied by n,

$$
K_{\text {new }}=\left(K_{\text {original }}\right)^{n}
$$

QUESTION

Starting with the initial concentrations of:

$$
\left[\mathrm{NH}_{3}\right]=2.00 \mathrm{M} ;\left[\mathrm{N}_{2}\right]=2.00 \mathrm{M} ;\left[\mathrm{H}_{2}\right]=2.00 \mathrm{M},
$$

what would you calculate as the equilibrium ratio once the equilibrium position is reached for the ammonia synthesis reaction?

$$
\mathrm{N}_{2}+3 \mathrm{H}_{2} \leftrightarrows 2 \mathrm{NH}_{3}
$$

A. 1.00
B. 0.250
C.4.00
D.This cannot be done from the information provided.

The Equilibrium Constant

QUESTION

One of the primary components in the aroma of rotten eggs is $\mathrm{H}_{2} \mathrm{~S}$. At a certain temperature, it will decompose via the following reaction.

$$
2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g}) \leftrightarrows 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{S}_{2}(\mathrm{~g})
$$

If an equilibrium mixture of the gases contained the following pressures of the components, what would be the value of K_{p} ?
$\mathrm{PH}_{2} \mathrm{~S}=1.19 \mathrm{~atm} ; \mathrm{PH}_{2}=0.25 \mathrm{~atm} ; \mathrm{PS}_{2}=0.25 \mathrm{~atm}$
A. 0.011
B. 91
C. 0.052
D.0.013

Heterogeneous Equilibria

- When all reactants and products are in one phase, the equilibrium is homogeneous.
- If one or more reactants or products are in a different phase, the equilibrium is heterogeneous.
- $\mathrm{CaCO}_{3}(\mathrm{~s}) \leftrightarrow \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$

$$
\cdot \mathrm{K}=\left[\mathrm{CO}_{2}\right]
$$

Heterogeneous Equilibria

$$
\mathrm{CaCO}_{3}(\mathrm{~s}) \leftrightarrow \mathrm{CaO}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g})
$$

$$
K=\left[\mathrm{CO}_{2}\right]
$$

-Experimentally, the amount of CO_{2} does not meaningfully depend on the amounts of CaO and CaCO_{3}.
-The position of a heterogeneous equilibrium does not depend on the amounts of pure solids or liquids present.

QUESTION

The liquid metal mercury can be obtained from its ore cinnabar via the following reaction:

$$
\mathrm{HgS}(s)+\mathrm{O}_{2}(g) \leftrightarrows \mathrm{Hg}(l)+\mathrm{SO}_{2}(g)
$$

Which of the following shows the proper expression for K_{c} ?
$A \cdot K_{\mathrm{c}}=[\mathrm{Hg}]\left[\mathrm{SO}_{2}\right] /[\mathrm{HgS}]\left[\mathrm{O}_{2}\right]$
B. $K_{\mathrm{c}}=\left[\mathrm{SO}_{2}\right] /\left[\mathrm{O}_{2}\right]$
C. $K_{\mathrm{c}}=[\mathrm{Hg}]\left[\mathrm{SO}_{2}\right] /\left[\mathrm{O}_{2}\right]$
D. $K_{\mathrm{c}}=\left[\mathrm{O}_{2}\right] /\left[\mathrm{SO}_{2}\right]$

QUESTION

At a certain temperature, FeO can react with CO to form Fe and CO_{2}. If the K_{p} value at that temperature was 0.242 , what would you calculate as the pressure of CO_{2} at equilibrium if a sample of FeO was initially in a container with CO at a pressure of 0.95 atm ?

$$
\mathrm{FeO}(s)+\mathrm{CO}(g) \leftrightarrows \mathrm{Fe}(s)+\mathrm{CO}_{2}(g)
$$

A. 0.24 atm
B. 0.48 atm
C. 0.19 atm
D. 0.95 atm

Calculating Equilibrium Constants
- Tabulate 1) initial and 2) equilibrium concentrations
(or partial pressures).
- Having both an initial and an equilibrium
concentration for any species, calculate its change
in concentration.
- Apply stoichiometry to the change in concentration
to calculate the changes in concentration of all
species.
- Deduce the equilibrium concentrations of all
species.

$\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{aq})} \rightleftarrows \mathrm{CH}_{3} \mathrm{COOH}_{(\mathrm{aq})}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}_{(\mathrm{aq})}$
$K_{c}: 5.00 \mathrm{ml}$ of ethyl alcohol, 5.00 ml of acetic acid and 5.00 ml of 3 M hydrochloric acid were mixed in a vial and allowed to come to equilibrium. The equilibrium mixture was titrated and found to contain 0.04980 mol of acetic acid at equilibrium. What is the value of K_{c} ?

1) Calculate the initial molar concentrations (moles are OK in this case).
2) Use the equilibrium concentration of acetic acid to determine the changes and the equilibrium concentrations of the others.
3) Place the equilibrium values into the equilibrium expression to find it's value.

	$\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5(\mathrm{aq)}}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{aq})}=$		$\mathrm{CH}_{3} \mathrm{COOH}_{(\mathrm{aq})}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}{ }_{(\mathrm{aq})}$	
Initial (mol)	0	0.261	0.0873	0.0856
Change	+0.0375	+0.0375	-0.0375	-0.0375
Equilibrium	0.0375	0.2985	0.0498	0.0481
$=0.21$	$0.0873-0.0498=0.0375$			

Calculating Equilibrium Constants
-1) Write the Equilibrium Expression for the hydrolysis of ethyl acetate and calculate \boldsymbol{K}_{c} from the following equilibrium concentrations.
-2) Write the Equilibrium Expression for the formation of ethyl acetate from acetic acid and calculate \boldsymbol{K}_{c} from the following equilibrium concentrations.

Ethyl acetate $=0.01217$ M; Ethanol $=0.01623 \mathrm{M}$
Acetic acid $=0.01750 \mathrm{M}$; Water $=0.09267 \mathrm{M}$

Calculating K_{c} from Concentration Data

$$
2 \mathrm{HI}_{(\mathrm{g})} \leftrightarrows \mathrm{H}_{2(\mathrm{~g})}+\mathrm{I}_{2(\mathrm{~g})}
$$

4.00 mol HI was placed in a 5.00 L vessel at $458^{\circ} \mathrm{C}$, the equilibrium mixture was found to contain $0.442 \mathrm{~mol}_{2}$. What is the value of K_{c} ? Calculate the molar concentrations, and put them into the equilibrium expression to find it's value.

Conc. (M)	$\mathbf{2 H I}\left({ }_{(g)}\right.$	$\mathrm{H}_{2(\mathrm{~g})}$	$\mathrm{I}_{\mathbf{2} \text { (g) }}$
Initial	0.800	0	0
Change	- 2 x	x	x
Equilibrium	0.800-2x	x	$\mathrm{x}=0$.

Calculating K_{c} from Concentration Data (continued)
$K_{\mathrm{c}}=\frac{\left[\mathrm{H}_{2}\right]\left[\mathrm{I}_{2}\right]}{[\mathrm{H}]^{2}}=\frac{(0.0884)(0.0884)}{(0.623)^{2}}=0.0201$

What does the value 0.0201 mean? Does the decomposition proceed very far under these temperature conditions?
Note: The initial concentrations, and one at equilibrium were provided. The others that were needed to calculate the equilibrium constant were deduced algebraically.

Calculation of Equilibrium Concentrations

The same steps used to calculate equilibrium constants are used.
Generally, we do not have a number for the change in concentrations line.
Therefore, we need to assume that x mol $/ \mathrm{L}$ of a species is produced (or used).
The equilibrium concentrations are given as algebraic expressions. Solution of a quadratic equation may be necessary.

QUESTION

The weak acid $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$, acetic acid, is a key component in vinegar. As an acid the aqueous dissociation equilibrium could be represented as

$$
\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(a q) \leftrightarrows \mathrm{H}^{+}(a q)+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}(a q)
$$

At room temperature the K_{c} value, at approximately 1.8×10^{-5}, is not large. What would be the equilibrium concentration of H^{+}starting from 1.0 M acetic acid solution?
A. $1.8 \times 10^{-5} \mathrm{M}$
B. $4.2 \times 10^{-3} \mathrm{M}$
C. $9.0 \times 10^{-5} \mathrm{M}$
D.More information is needed to complete this calculation.

Equilibrium Concentration Calculations from Initial Concentrations and K_{c}

The reaction to form HF from hydrogen and fluorine has an equilibrium constant of 115 at temperature T. If 3.000 mol of each component is added to a 1.500 L flask, calculate the equilibrium concentrations of each species.

$$
\mathrm{H}_{2(\mathrm{~g})}+\mathrm{F}_{2(\mathrm{~g})} \rightleftarrows 2 \mathrm{HF}_{(\mathrm{g})}
$$

Solution:

$$
\begin{array}{ll}
K_{\mathrm{c}}=\frac{\left[\mathrm{HF}^{2}\right.}{\left[\mathrm{H}_{2}\right]\left[\mathrm{F}_{2}\right]}=115=\frac{3.000 \mathrm{~mol}}{1.500 \mathrm{~L}}=2.000 \mathrm{M} \\
& {\left[\mathrm{~F}_{2}\right]=\frac{3.000 \mathrm{~mol}}{1.500 \mathrm{~L}}=2.000 \mathrm{M}} \\
& {[\mathrm{HF}]=\frac{3.000 \mathrm{~mol}}{1.500 \mathrm{~L}}=2.000 \mathrm{M}}
\end{array}
$$

Equilibrium Concentration Calculations $\mathrm{H}_{2(\mathrm{~g})}+\mathrm{F}_{2(\mathrm{~g})} \leftrightarrows 2 \mathrm{HF}_{(\mathrm{g})}$ (Continued)

K vs. Q: Equilibrium Constants
 Has equilibrium been reached?

Has equilibrium been reached? Q is the "reaction
orangeneral reaction, forexamp:
$\cdot a A+b B \rightleftharpoons m M+p P$

$$
Q=\frac{[\mathrm{M}]^{+\infty}[\mathrm{P}]^{+p}}{[\mathrm{~A}]^{+\alpha[}[\mathrm{B}]^{+b}}
$$

$[A],[B],[P]$, and $[M]$ are Molarities at any time.

$$
\mathrm{Q}=\mathrm{K} \text { only at equilibrium }
$$

Q vs.K: Predicting the Direction of Reaction
If $Q<K$ then the forward reaction must occur to reach equilibrium. (i.e., reactants are consumed, products are formed, the numerator in the equilibrium constant expression increases and Q increases until it equals K).

- If $Q>K$ then the reverse reaction must occur to reach equilibrium (i.e., products are consumed, reactants are formed, the numerator in the equilibrium constant expression decreases and Q decreases until it equals K).

$$
\begin{gathered}
\begin{array}{c}
\text { Calculating Reaction Direction and } \\
\text { Equilibrium Concentrations }
\end{array} \\
Q_{\mathrm{c}}=\frac{\left[\mathrm{CS}_{2}\right]\left[\mathrm{H}_{2}\right]^{4}}{\left[\mathrm{CH}_{4}\right]\left[\mathrm{H}_{2} \mathrm{~S}\right]^{2}}=\frac{4.00 \times(8.00)^{4}}{4.00 \times(8.00)^{2}}=64.0
\end{gathered}
$$

Compare Q_{c} and $K_{\mathrm{c}}: Q_{\mathrm{c}}>K_{\mathrm{c}}(64.0>0.036$, so the reaction goes to the left. Therefore, reactants increase and products decrease their concentrations.
(b) Set up the reaction table, with $\mathrm{x}=\left[\mathrm{CS}_{2}\right]$ that reacts, which equals the $\left[\mathrm{CH}_{4}\right]$ that forms.

Concentration (M)	$\mathrm{CH}_{4(\mathrm{~g})}$	$+2 \mathrm{H}_{2} \mathrm{~S}_{(\mathrm{g})}$	$\mathrm{CS}_{2(\mathrm{~g})}$	$\mathbf{4} \mathrm{H}_{2(\mathrm{~g})}$
Initial	4.00	8.00	4.00	8.00
Change	+x	+2x	-x	$-4 x$
Equilibrium	$4.00+\mathrm{x}$	$8.00+2 \mathrm{x}$	$4.00-\mathrm{x}$	8.00-4x
Solving for x at equilibrium:		$\begin{aligned} & {\left[\mathrm{CH}_{4}\right]=5.56 \mathrm{M}=4.00 \mathrm{M}+\mathrm{x}} \\ & \mathrm{x}=1.56 \mathrm{M} \end{aligned}$		

Changes on the System

1. Concentration: The system will shift concentrations away from the added component. K remains the same.
2. Temperature: K changes depending upon the reaction.

- If endothermic, heat is treated as a "reactant", if exothermic, heat is a "product". Endo->K increases; Exo-> K decreases.
- if $\Delta \mathrm{H}>0$, adding heat favors the forward reaction,
- if $\Delta \mathrm{H}<0$, adding heat favors the reverse reaction.

Which is favored by raising the temperature in the following equilibrium reaction? $A+B$ or C

Reaction pathway

QUESTION

The following table shows the relation between the value of K and temperature of the system:

At $25^{\circ} \mathrm{C} ; K=45$; at $50^{\circ} \mathrm{C} ; K=145$; at $110^{\circ} \mathrm{C} ; K=467$
(a) Would this data indicate that the reaction was endothermic or exothermic? (b) Would heating the system at equilibrium cause more or less product to form?
A.Exothermic; less product
B.Exothermic; more product
C.Endothermic; less product
D.Endothermic; more product

Changes on the System (continued)
Pressure:
a. Addition of inert gas does not affect the equilibrium position.
b. Decreasing the volume shifts the equilibrium toward the side with fewer moles.

- $K_{p}=K_{c}(R T)^{\Delta n}$
$\Delta n=n_{\text {gas }}$ (products) $-n_{\text {gas }}$ (reactants)
- As the volume is decreased pressure increases.
- Le Châtelier's Principle: if pressure is increased the system shifts to minimize the increase.

QUESTION

The balanced equation shown here has a K_{p} value of 0.011 .
What would be the value for K_{c} ?(at approximately $1,100^{\circ} \mathrm{C}$)

$$
2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g}) \leftrightarrows 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{S}_{2}(\mathrm{~g})
$$

A. 0.000098
B.0.011
C.0.99
D.1.2

Changes on the System (continued)
4. The Effect of Catalysts

- A catalyst lowers the activation energy barrier for any reaction....in both forward and reverse directions!
- A catalyst will decrease the time it takes to reach equilibrium.
- A catalyst does not effect the composition of the equilibrium mixture.

