

Chemical Equilibrium

• The reactions considered until now have had reactants react completely to form products. These reactions "went" only in one direction.

•Some reactions can react in either direction. They are "reversible". When this occurs some amount of reactant(s) will always remain in the final reaction mixture.

Chemical Equilibrium (Definitions)

A chemical system where the concentrations of reactants and products remain constant over time.
On the molecular level, the system is dynamic: The rate of change is the same in either the forward or reverse directions.

		"T	ic Equili ^{The Pennies}	"	
		B, IIA with IIB, a		um trading partner astrated as1X with	
	Group	1 X	1 Y	2 X	2 Y
hase I:	Rate	-30%	-10%	-30%	-50%
	initial	40	0	2 0	2 0
Η.	change final				
ase II:	initial				
	change				
	final				

		Dynam "1	ic Equit The Pennie		
	12(50% starts w	b) to 1 Y who has	s 0 pennies and h 6(30%) to 2 Y w	th 40 pennies and gi has none to give 10% hile 2Y also starts v	6 of; 2 X
	Group	1 X	1 Y	2 X	2 Y
	Rate	-30%	-10%	-30%	-50%
Phase I:	initial	40	0	20	20
	change final	- 1 2	+12	-6+10	-10+6
Phase II:	initial change final				

	1	Dynami "Tl	C Equil ne Pennies		
	Phase I en	ds with a closing	balance illusti	rated in red and a ne	t
				2X and -4 for 2Y	
	Group	1X	17	2X	2Y
	Rate	-30%	-10%	-30%	-50%
Phase I:	initial	40	0	20	20
	change	-12	+12	-6+10	-10+6
	final	28	12	24	16
Phase II:	initial change final				

Phase II starts with the balance from Phase I froup 1 X 1 Y 2 X hase I: 1 X 1 Y 2 X hase I: 1 X 1 Y 2 X hase I: 1 Y 2 X hitial 40 0 2 0 hitial 40 2 0 2 0 12 +12 -6+10 Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2"Colspan="2	
hase I: Rate -30% -10% -30% initial 40 0 20 change -12 +12 -6+10	
hase I: Rate -30% -10% -30% initial 40 0 20 change -12 +12 -6+10	2 Y
change -12 +12 -6+10	-50%
	20
	-10+6
final 28 12 24	16
ase II: -30% -10% -25%	-50%
initial 28 12 24	16
change	
final	

		P	enni	es R	esult	's		
Group	IA	18	IIA	118	IIIA	118	IVA.	M
Rate	-50%	-10%	-25%	-50%	-10%	-50%	-50%	-25%
initial	40	0	2.0	2.0	20	2.0	0	40
change								
Frai	2.0	2.0	2.5	15	2.8	12	10	3 (
in the local sectors in	-50%	- 7 0%	-25%	-50%	-10%	-50%	-50%	-25%
initial								
final	12	2.8	2.0	13	3.1	9	12	21
11100	-50%	-10%	-25%	-50%	-10%	-50%	-50%	-25%
initial		11079	16.279	-3079	170%	-3079	130%	16.579
change								
final	9	31	27	14	33	7	13	23
	-50%	-10%	-25%	-50%	-10%	-50%	-50%	-25%
initial								
change								
final	7	3.3	2.7	14	3.4	6	13	21
	-25%	-50%	-50%	-10%	-50%	-25%	-10%	-50%
initial								
change								
final	2.2	18	14	2.6	19	21	2.5	11
	-25%	-50%	-50%	-7.0%	-50%	-25%	-10%	-50%
initial								
change	25		1.0	3.0	14	2.6		10
10al	-25%	15	-50%	-10%	-50%	-25%	3.0	-50%
initial		-31/74	131/76	11079	130%	12.379	170%	-30%
change								
tinal	27	13	8	3.2	14	2.6	3.2	
	-25%	-50%	-50%	-10%	-50%	-25%	-10%	-50%
initial			207		2010		1010	
change								
final	27	13	7	3.3	14	2.6	33	

Chemical Equilibrium

$N_2(g) + 3H_2(g) \Longrightarrow 2NH_3(g)$

- Add nitrogen and hydrogen gases together in any proportions. Nothing noticeable occurs.
- Add heat, pressure and a catalyst, you smell ammonia => a mixture with constant concentrations of N₂, H₂ and NH₃ is produced.
- Start with just ammonia and catalyst. N₂ and H₂ will be produced until a state of equilibrium is reached.
- As before, a mixture with constant concentrations of nitrogen, hydrogen and ammonia is produced.

Chemical Equilibrium

$N_2(g) + 3H_2(g) \Longrightarrow 2NH_3(g)$

No matter what the starting composition of reactants and products, the same ratio of concentrations is realized when equilibrium is reached at a certain temperature and pressure.

This is a concentration profile for the reaction $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$ when only $N_2(g)$ and $H_2(g)$ are mixed initially.

- A. At equilibrium, the concentration of NH₃ remains constant even though some is also forming N₂ and H₃, because some N₃ and H₃ continues to form NH₃.
- also forming N₂ and H₂, because some N₂ and H₂ continues to form NH₃. B The NH₃ curve (red) crosses the N₂ curve (blue) before reaching equilibrium because it is formed at a slower rate than N₂ rate of use.
- C. All slopes of tangent lines become equal at equilibrium because the reaction began with no product (NH₃).
 D. If the initial N₂ and H₂ concentrations were doubled from what is shown here, the
- D. If the initial N₂ and H₂ concentrations were doubled from what is shown here, the final positions of those curves would be twice as high, but the NH₃ curve would be the same.

Law of Mass Action (Equilibrium Expression) • For a reaction:

- jA + kB ≒ IC + mD
- The law of mass action is represented by the Equilibrium Expression: where K is the Equilibrium Constant. (Units for K will vary.) $K = \frac{[C]^{l}[D]^{m}}{[A]^{l}[B]^{k}}$

QUESTION

One of the environmentally important reactions involved in acid rain production has the following equilibrium expression. From the expression, what would be the balanced chemical reaction?

Note: all components are in the gas phase.

 $K = [SO_3]/([SO_2][O_2]^{1/2})$

A.SO₃(g) \Rightarrow SO₂(g) + 2O₂(g) B.SO₃(g) \Rightarrow SO₂(g) + 1/2O₂(g) C.SO₂(g) + 2O₂(g) \Rightarrow SO₃(g) D.SO₂(g) + 1/2O₂(g) \Rightarrow SO₃(g)

Starting with the initial concentrations of:

 $[NH_3] = 2.00 M; [N_2] = 2.00 M; [H_2] = 2.00 M,$

what would you calculate as the equilibrium ratio once the equilibrium position is reached for the ammonia synthesis reaction?

 $N_2 + 3H_2 \leftrightarrows 2NH_3$

A.1.00 B.0.250 C.4.00 D.This cannot be done from the information provided.

One of the primary components in the aroma of rotten eggs is H_2S . At a certain temperature, it will decompose via the following reaction.

 $2H_2S(g) \leftrightarrows 2H_2(g) + S_2(g)$

If an equilibrium mixture of the gases contained the following pressures of the components, what would be the value of K_p ?

 $P{\rm H_2S} = 1.19 \; atm; \; P{\rm H_2} = 0.25 \; atm; \; \; P{\rm S_2} = 0.25 \; atm$

A.0.011 B.91 C.0.052 D.0.013

Heterogeneous Equilibria

CaCO₃(s) ↔ CaO(s) + CO₂(g) K = [CO₂] •Experimentally, the amount of CO₂ does not meaningfully depend on the amounts of CaO and CaCO₃. •The position of a heterogeneous equilibrium does not depend on the amounts of pure solids or liquids

present.

QUESTION

The liquid metal mercury can be obtained from its ore cinnabar via the following reaction:

 $\operatorname{HgS}(s) + \operatorname{O}_2(g) \leftrightarrows \operatorname{Hg}(l) + \operatorname{SO}_2(g)$

Which of the following shows the proper expression for K_c ?

$\begin{array}{l} A.K_{\rm c} = [{\rm Hg}][{\rm SO}_2]/[{\rm HgS}][{\rm O}_2] \\ B.K_{\rm c} = [{\rm SO}_2]/[{\rm O}_2] \\ C.K_{\rm c} = [{\rm Hg}][{\rm SO}_2]/[{\rm O}_2] \\ D.K_{\rm c} = [{\rm O}_2]/[{\rm SO}_2] \end{array}$

QUESTION

At a certain temperature, FeO can react with CO to form Fe and CO₂. If the K_p value at that temperature was 0.242, what would you calculate as the pressure of CO₂ at equilibrium if a sample of FeO was initially in a container with CO at a pressure of 0.95 atm?

 $FeO(s) + CO(g) \leftrightarrows Fe(s) + CO_2(g)$

A.0.24 atm B.0.48 atm C.0.19 atm D.0.95 atm

Calculating Equilibrium Constants

- Tabulate 1) initial and 2) equilibrium concentrations (or partial pressures).
- Having both an initial and an equilibrium concentration for any species, calculate its change in concentration.
- Apply stoichiometry to the change in concentration to calculate the changes in concentration of all species.
- Deduce the equilibrium concentrations of all species.

$\frac{\text{CH}_3\text{COOC}_2\text{H}_{5(aq)} + \text{H}}{K_c: 5.00 \text{ ml of ethyl alcohol}}$ hydrochloric acid wer equilibrium. The equili contain 0.04980 mol of of K_c?	l, 5.00 ml of ace e mixed in a via ibrium mixture	tic acid and 5.0 I and allowed t was titrated and	00 ml of 3M to come to l found to
 Calculate the initial mola Use the equilibrium conc the equilibrium concentrati Place the equilibrium val 	entration of acetic ons of the others.	acid to determine	the changes and
CH ₃ COOC	$_{2}H_{5(aq)} + H_{2}O_{(aq)}$	→ CH ₃ COOH _{(ac}	$H_{(aq)} + C_2 H_5 O H_{(aq)}$
Initial (mol) 0	0.261	0.0873	0.0856
Change +0.0375	+0.0375	-0.0375	-0.0375
Equilibrium 0.0375	0.2985	0.0498	0.0481
$K_c = 0.214$	0.0873	- 0.0498 = 0.03	375

Calculating Equilibrium Constants

•1) Write the Equilibrium Expression for the hydrolysis of ethyl acetate and calculate \mathbf{K}_c from the following equilibrium concentrations.

•2) Write the Equilibrium Expression for the formation of ethyl acetate from acetic acid and calculate \mathbf{K}_c from the following equilibrium concentrations.

Ethyl acetate = 0.01217 M; Ethanol = 0.01623 M Acetic acid = 0.01750 M ; Water = 0.09267 M

Calculating K _c from Concentration Data						
4.00 mol HI was p. mixture was found Calculate the mola the equilibrium exp Initial con	to contain 0.442 cr concentrations,	wessel at 458° mol I_2 . What is and put them is value. $\frac{mol}{0L} = 0.800$	is the value of K _c ? into M			
Conc. (<i>M</i>)	2HI _(g)	\rightarrow H _{2 (g)}	I _{2 (g)}			
Initial	0.800	0	0			
Change	- 2x	х	х			
Equilibrium	0.800 - 2x	х	x = 0.0884			
-						

Calculation of Equilibrium Concentrations

- The same steps used to calculate equilibrium constants are used.
- Generally, we do not have a number for the change in concentrations line.
- Therefore, we need to assume that x mol/L of a species is produced (or used).
- The equilibrium concentrations are given as algebraic expressions.Solution of a quadratic equation may be necessary.

The weak acid $HC_2H_3O_2$, acetic acid, is a key component in vinegar. As an acid the aqueous dissociation equilibrium could be represented as

 $\mathrm{HC}_{2}\mathrm{H}_{3}\mathrm{O}_{2}(aq)\leftrightarrows \mathrm{H}^{+}(aq) + \mathrm{C}_{2}\mathrm{H}_{3}\mathrm{O}_{2}^{-}(aq).$

At room temperature the K_c value, at approximately 1.8×10^{-5} , is not large. What would be the equilibrium concentration of H⁺ starting from 1.0 *M* acetic acid solution?

A.1.8 \times 10⁻⁵ M B.4.2 \times 10⁻³ M C.9.0 \times 10⁻⁵ M D.More information is needed to complete this calculation.

Equi	$librium_{H_{2(g)}+F_{2(g)}}^{Conc}$	entrat	ion Ca	lculations
	Concentration (M)	H_2	F_2	HF
	Initial	2.000	2.000	2.000
	Change	-X	-X	+2x
	Final	2.000-x	2.000-x	2.000+2x
$K_{\rm c} =$	$\frac{[\text{HF}]^2}{[\text{H}_2][\text{F}_2]} = 115 = \frac{115}{(22)}$ Taking the square root			$= \frac{(2.000 + 2x)^2}{(2.000 - x)^2}$
	$(115)^{1/2} = \frac{(2.000 + 2.000)}{(2.000 - 0.000)}$			x = 1.528
- 2-	.000 - 1.528 = 0.472 M 000 - 1.528 = 0.472 M	$M_{\rm c} = M$	$\frac{[HF]^2}{[H_2][F_2]}$	$= \frac{(5.056 M)^2}{(0.472 M)(0.472 M)}$
- 2-	.000 + 2(1.528) = 5.05		ieck:	$K_{\rm c} = 115$

Calculating Reaction Direction and Eauilibrium Concentrations						
Two components of natural gas can react according to the						
following chemical equation:						
$CH_{4(g)} + 2 H_2S_{(g)} \longrightarrow CS_{2(g)} + H_{2(g)}$						
1.00 mol CH ₄ , 1.00 mol CS ₂ , 2.00 mol H ₂ S, and 2.00 mol H ₂ are mixed						
in a 250 mL vessel at 960°C. At this temperature, $K_c = 0.036$.						
(a) In which direction will the reaction go?						
(b) If $[CH_4] = 5.56 M$ at equilibrium, what are the concentrations of						
the other substances?						
Calculate Q_c and compare it with K_c . Based upon (a), we determine the						
sign of each component for the reaction table and then use the given						
$[CH_4]$ at equilibrium to determine the others.						
Solution:						
$[H_2S] = 8.00 M, [CS_2] = 4.00 M$						
$[CH_4] = \frac{1.00 \text{ mol}}{0.250 \text{ L}} = 4.00 M$ and $[H_2] = 8.00 M$						

Calculating Reaction Direction and Equilibrium Concentrations							
$Q_{\rm c} = -$	$Q_{\rm c} = \frac{[\rm CS_2] \ [\rm H_2]^4}{[\rm CH_4] \ [\rm H_2S]^2} = \frac{4.00 \ x \ (8.00)^4}{4.00 \ x \ (8.00)^2} = 64.0$						
 Compare Q_c and K_c: Q_c > K_c (64.0 > 0.036, so the reaction goes to the left. Therefore, reactants increase and products decrease their concentrations. (b) Set up the reaction table, with x = [CS₂] that reacts, which equals the [CH₄] that forms. 							
Concentration (M) $CH_{4(g)} + 2H_2S_{(g)} \longrightarrow CS_{2(g)} + 4H_{2(g)}$							
Initial Change	4.00 +x	8.00 +2x	4.00 -x				
Equilibrium	0						
Solving for x at equilibrium: $[CH_4] = 5.56 M = 4.00 M + x$ x = 1.56 M							

Calculating Reaction Direction and Equilibrium Concentrations
$x = 1.56 M = [CH_4]$
Therefore:
$[H_2S] = 8.00 M + 2x = 8.00 M + 2(1.56 M) = 11.12 M$
$[CS_2] = 4.00 M - x = 4.00 M - 1.56 M = 2.44 M$
$[H_2] = 8.00 M - 4x = 8.00 M - 4(1.56 M) = 1.76 M$
[CH ₄] = 1.56 <i>M</i>

The following table shows the relation between the value of K and temperature of the system:

At 25°C; *K* = 45; at 50°C; *K* = 145; at 110°C; *K* = 467

(a) Would this data indicate that the reaction was endothermic or exothermic? (b) Would heating the system at equilibrium cause more or less product to form?

A.Exothermic; less product B.Exothermic; more product C.Endothermic; less product D.Endothermic; more product

The balanced equation shown here has a K_p value of 0.011. What would be the value for K_c ?(at approximately 1,100°C)

 $2\mathrm{H}_2\mathrm{S}(g)\leftrightarrows 2\mathrm{H}_2(g)+\mathrm{S}_2(g)$

A.0.000098 B.0.011 C.0.99 D.1.2

Changes on the System (continued)

- 4. The Effect of Catalysts
- A catalyst lowers the activation energy barrier for any reaction....in both forward and reverse directions!
- A catalyst will decrease the time it takes to reach equilibrium.
- A catalyst does not effect the composition of the equilibrium mixture.

