

Weak Acids

- The higher percent ionization, the stronger the acid.
- Percent ionization of a weak acid decreases as the molarity of the solution increases.
- For acetic acid, 0.05 M solution is 2.0 \% ionized whereas a 0.15 M solution is 1.0 \% ionized.

| Weak Acids |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Percent Ionization |

QUESTION

Nitric acid, HNO_{3}, is considered to be a strong acid whereas nitrous acid, HNO_{2}, is considered to be a weak acid. Which of the statements here is fully correct?
A. Nitric acid has an aqueous equilibrium that lies far to the right and $\mathrm{NO}_{3}{ }^{-}$is considered a weak conjugate base.
B. Nitric acid has a stronger conjugate base than nitrous acid.
C. The dissociation of nitrous acid compared to an equal concentration of nitric acid produces more H^{+}
D. The equilibrium of nitrous acid lies far to the left and the conjugate base is weaker than the conjugate base of nitric acid.

Bases

(continued)

- Weak bases have very little dissociation, $K_{b}<$ 1 (little ionization with water)
$\rightarrow \mathrm{CH}_{3} \mathrm{NH}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \stackrel{\leftarrow}{\leftrightarrows}$
$\mathrm{CH}_{3} \mathrm{NH}_{3}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$

QUESTION

Aniline, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$, was isolated in the 1800 s and began immediate use in the dye industry. What is the formula of the conjugate acid of this base?
A. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}{ }^{+}$
B. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3}^{+}$
C. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}^{-}$
D. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}^{+}$

The Relations Among $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right.$], pH, [OH^{-}], and pOH			$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$	pH	[OH^{-}]	pOH
			1.0×10^{-15}	15.00	1.0×10^{1}	-1.00
			1.0×10^{-14}	14.00	1.0×10^{0}	0.00
	\%		1.0×10^{-13}	13.00	1.0×10^{-1}	1.00
	m	BASIC	1.0×10^{-12}	12.00	1.0×10^{-2}	2.00
	$\stackrel{\widetilde{1}}{0}$		1.0×10^{-11}	11.00	1.0×10^{-3}	3.00
	\sum		1.0×10^{-10}	10.00	1.0×10^{-4}	4.00
			1.0×10^{-9}	9.00	1.0×10^{-5}	5.00
			1.0×10^{-8}	8.00	1.0×10^{-6}	6.00
		NEUTRAL	1.0×10^{-7}	7.00	1.0×10^{-7}	7.00
			1.0×10^{-6}	6.00	1.0×10^{-8}	8.00
			1.0×10^{-5}	5.00	1.0×10^{-9}	9.00
	$\frac{\square}{O}$		1.0×10^{-4}	4.00	1.0×10^{-10}	10.00
	0	IDIC	1.0×10^{-3}	3.00	1.0×10^{-11}	11.00
		Cidic	1.0×10^{-2}	2.00	1.0×10^{-12}	12.00
	$\stackrel{\square}{2}$		1.0×10^{-1}	1.00	1.0×10^{-13}	13.00
			1.0×10^{0}	0.00	1.0×10^{-14}	14.00
			1.0×10^{1}	-1.00	1.0×10^{-15}	15.00

QUESTION

An environmental chemist obtains a sample of rainwater near a large industrial city. The $\left[\mathrm{H}^{+}\right]$was determined to be $3.5 \times 10^{-6} \mathrm{M}$. What is the $\mathrm{pH}, \mathrm{pOH}$, and $\left[\mathrm{OH}^{-}\right]$of the solution?
A. $\mathrm{pH}=5.46 ; \mathrm{pOH}=8.54 ;\left[\mathrm{OH}^{-}\right]=7.0 \times 10^{-6} \mathrm{M}$
B. $\mathrm{pH}=5.46 ; \mathrm{pOH}=8.54 ;\left[\mathrm{OH}^{-}\right]=2.9 \times 10^{-9} \mathrm{M}$
C. $\mathrm{pH}=12.56 ; \mathrm{pOH}=1.44 ;\left[\mathrm{OH}^{-}\right]=3.6 \times 10^{-2} \mathrm{M}$
D. $\mathrm{pH}=8.54 ; \mathrm{pOH}=5.46 ;\left[\mathrm{OH}^{-}\right]=2.9 \times 10^{-9} \mathrm{M}$

The pH Scale				
$\left[\mathrm{H}^{+}\right]$	$\left[\mathrm{OH}^{-}\right]$	pH	pOH	acidic or basic?
$7.5 \times 10^{-3} \mathrm{M}$	1.3×10^{-12}	2.1	11.9	Acid
2.8×10^{-5}	$3.6 \times 10^{-10} \mathrm{M}$	4.6	9.4	Acid
5.62×10^{-9}	1.78×10^{-6}	8.25	5.75	Base
5.00×10^{-9}	2.00×10^{-6}	8.30	5.70	Base

Titrations: Indicators \& (pH)

 Curves-pH Curve is a plot of pH of the solution being analyzed as a function of the amount of titrant added.

- Equivalence (stoichiometric) point:

Enough titrant has been added to react exactly with the solution being analyzed. An indicator provides a visible color change to determine an (end point) volume of titrant.

QUESTION

The acid-base indicator bromocresol purple has an interesting yellow-to-purple color change. If the approximate K_{a} of this indicator is 1.0×10^{-6}, what would be the ratio of purple [A^{-}] to yellow [HA] at a pH of 4.0 ?
A. $100: 1$
B. $1: 100$
C. $1: 1$
D. This choice indicates that I don't know.

Strong vs.Weak Acids

pH Estimations/ Calculations

What are the respective pH values for a 0.100 M solution of $\mathrm{HCl}\left(K_{a}=\infty\right)$ and a 0.100 M solution of HF ($\left.K_{a}=3.53 \times 10^{-4}\right)$?

What are the respective equilibrium concentrations of $\mathrm{H}^{+}\left(\mathrm{H}_{3} \mathrm{O}^{+}\right)$?

- pH is calculated from the equilibrium concentration of $\mathrm{H}^{+}\left(\mathrm{H}_{3} \mathrm{O}\right)$
- Using K_{2}, and the starting molarity of acid, the equilibrium concentration of $\mathrm{H}^{+}\left(\mathrm{H}_{3} \mathrm{O}^{+}\right)$can be estimated and then pH); Strong acids 100%, pH=1.00, Weak: less than 100%

Strong vs.Weak Acids
 pH Estimations/ Calculations

What are the respective pH values for a 0.100 M solution of $\mathrm{HCl}\left(K_{\mathrm{a}}=\infty\right)$ and a 0.100 M solution of HF $\left(K_{a}=3.53 \times 10^{-4}\right)$?

- Using $\mathrm{K}_{\text {, }}$, and the starting molarity of the weak acid, the equilibrium concentration of $\mathrm{H}^{+}\left(\mathrm{H}_{3} \mathrm{O}^{+}\right)$can be estimated using an ICE approach and then the pH
$K_{\mathrm{a}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{-}\right] /[\mathrm{HA}-x]=x^{2} /(0.100 \mathrm{M}-x)$
$3.53 \times 10^{-4}=x^{2} / 0.100$; estimate @ $\boldsymbol{x} \cong\left(10^{-5}\right)^{1 / 2}$ representing the $\left[\mathrm{H}^{+}\right]$, taking -log yields a $\mathrm{pH}>2$ and <3.

Strong vs.Weak Acids pH Estimations/ Calculations
What are the respective pH values for a 0.100 M solution of $\mathrm{HCl}\left(K_{\mathrm{a}}=\infty\right)$ and a 0.100 M solution of $H F\left(K_{a}=3.53 \times 10^{-4}\right)$?
- Using K_{2}, and the starting molarity of the weak acid, the equilibrium concentration of $\mathrm{H}^{+}\left(\mathrm{H}_{3} \mathrm{O}^{+}\right)$can be estimated using an ICE approach and then the pH .
$K_{\mathrm{a}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{-}\right] /[\mathrm{HA}-x]=x^{2} /(0.100 \mathrm{M}-x)$
$3.53 \times 10^{-4}=x^{2} / 0.100 ;$ estimate @ $\boldsymbol{x} \cong\left(10^{-5}\right)^{1 / 2}$ representing the $\left[\mathrm{H}^{+}\right]$, taking -log yields a $\mathrm{pH}>2$ and <3.

Weak Acids

K_{a} and Calculating pH

- Write the balanced chemical equation clearly showing the equilibrium.
- Write the equilibrium expression. Use the value for K_{a}
- Let $\mathrm{x}=\left[\mathrm{H}^{+}\right]$; substitute into the equilibrium constant expression and solve.
- Convert $\left[\mathrm{H}^{+}\right]$to pH .

QUESTION

Which of the following correctly compares strength of acids, pH , and concentrations?
A. A weak acid, at the same concentration of a strong acid, will have a lower pH .
B. A weak acid, at the same concentration of a strong acid, will have the same pH .
C. A weak acid, at a high enough concentration more than a strong acid, could have a lower pH than the strong acid.
D. A weak acid, at a concentration below a strong acid, could have a lower pH than a strong acid.

Equilibrium Concentration Calculations pH from Initial Concentrations and K_{a}

What is the pH value for a 0.100 M solution of HF ($K_{a}=3.53 \times 10^{-4}$)?

$$
\begin{aligned}
\mathrm{HF}_{(\mathrm{aq})} & \rightleftarrows \mathrm{H}^{+}{ }_{(\mathrm{aq})}+\mathrm{F}^{-}{ }_{(\mathrm{aq})} \\
K_{\mathrm{a}} & =\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{F}^{-}\right]}{[\mathrm{HF}]}
\end{aligned}
$$

QUESTION

Butyric acid is a weak acid that can be found in spoiled butter.
The compound has many uses in synthesizing other flavors.
The K_{a} of $\mathrm{HC}_{4} \mathrm{H}_{7} \mathrm{O}_{2}$ at typical room temperatures is 1.5×10^{-5}.
What is the pH of a 0.20 M solution of the acid?
A. 5.52
B. 4.82
C. 2.76
D. -0.70

QUESTION

A 0.35 M solution of an unknown acid is brought into a lab. The pH of the solution is found to be 2.67 . From this data, what is the K_{a} value of the acid?
A. 6.1×10^{-3}
B. 1.3×10^{-5}
C. 7.5×10^{-4}
D. 2.1×10^{-3}

K_{a} Values of Some Hydrated Metal Ions at $25^{\circ} \mathrm{C}$		
Ion	K_{a}	
$\begin{aligned} & \mathrm{Fe}^{3+}(\mathrm{aq}) \\ & \mathrm{Sn}^{2+}(\mathrm{aq}) \\ & \mathrm{Cr}^{3+}(\mathrm{aq}) \\ & \mathrm{Al}^{3+}(\mathrm{aq}) \\ & \mathrm{Be}^{2+}(\mathrm{aq}) \\ & \mathrm{Cu}^{2+}(\mathrm{aq}) \\ & \mathrm{Pb}^{2+}(\mathrm{aq}) \\ & \mathrm{Zn}^{2+}(\mathrm{aq}) \\ & \mathrm{Co}^{2+}(\mathrm{aq}) \\ & \mathrm{Ni}^{2+}(\mathrm{qq} \end{aligned}$	$\begin{aligned} & 6 \times 10^{-3} \\ & 4 \times 10^{-4} \\ & 1 \times 10^{-4} \\ & 1 \times 10^{-5} \\ & 4 \times 10^{-6} \\ & 3 \times 10^{-8} \\ & 3 \times 10^{-8} \\ & 1 \times 10^{-9} \\ & 2 \times 10^{-10} \\ & 1 \times 10^{-10} \end{aligned}$	

Oxides

* Acidic Oxides (Acid Anhydrides):
a-X bond is strong and covalent.
$\mathrm{SO}_{2}, \mathrm{NO}_{2}, \mathrm{CrO}_{3}$
- Basic Oxides (Basic Anhydrides):
$\mathrm{O}-X$ bond is ionic.
$\mathrm{K}_{2} \mathrm{O}, \mathrm{CaO}$

Structure and Acid-Base Properties

- Two important factors that effect acidity in binary compounds, eg. HCl (aq):
a Bond Polarity (smaller e.n. differences favor higher acidities)
a Bond Strength (weak bonds favor higher acidity: more protons [hydronium ions] in solution)
a Select \& explain which is the stronger acid: HBr vs. HF.

QUESTION
The following salts were all placed in separate solutions at the same temperature so that their concentrations were all equal. Arrange them in order from lowest pH to highest pH .
$\mathrm{NaCl} ; \quad \mathrm{NH}_{4} \mathrm{NO}_{3} ; \quad \mathrm{Ca}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2} ; \quad \mathrm{AlCl}_{3}$
Additional information: K_{b} for $\mathrm{NH}_{3}=1.8 \times 10^{-5} ; \mathrm{K}_{\mathrm{a}}$ for $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}=1.8 \times 10^{-5} ; K_{\mathrm{a}}$ for $\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)^{3+}=1.4 \times 10^{-5}$.
A. NaCl ;
B. AlCl_{3};
C. AlCl_{3}; NaCl ; $\mathrm{NH}_{4} \mathrm{NO}_{3}$;
D. $\mathrm{NH}_{4} \mathrm{NO}_{3} ; \mathrm{AlCl}_{3}$; NaCl ; $\mathrm{Ca}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2}$
NaCl ;
$\mathrm{Ca}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2}$
$\mathrm{Ca}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2}$

Strength of Oxyacids

Name the acids:

- $\mathrm{HBrO}, \mathrm{K}_{\mathrm{a}}=2.1 \times 10^{-8}$
- $\mathrm{HIO}, \mathrm{K}_{\mathrm{a}}=2.3 \times 10^{-11}$
- $\mathrm{HClO}, \mathrm{K}_{\mathrm{a}}=3.0 \times 10^{-8}$
- $\mathrm{HClO}_{2}, \mathrm{~K}_{\mathrm{a}}=1.2 \times 10^{-2}$

Is HBrO_{3} stronger or weaker than HClO_{3} ? A) stronger or B) weaker

Strength of Oxyacids

Name the acids:

- $\mathrm{HBrO}, \mathrm{K}_{\mathrm{a}}=2.1 \times 10^{-8}$
- HIO , $\mathrm{K}_{\mathrm{a}}=2.3 \times 10^{-11}$
- $\mathrm{HClO}, \mathrm{K}_{\mathrm{a}}=3.0 \times 10^{-8}$
- $\mathrm{HClO}_{2}, \mathrm{~K}_{\mathrm{a}}=1.2 \times 10^{-2}$

Is HBrO_{3} stronger or weaker than HClO_{3} ?
A) stronger or B) weaker

	Strength of Acids	

QUESTION

Strength of Acids			
$\mathrm{Br}-\mathrm{CH}_{2} \mathrm{COOH}, \mathrm{l}-\mathrm{CH}_{2} \mathrm{COOH}, \mathrm{CH}_{3} \mathrm{COOH}$			
- pKa=2.69 pKa=3.12 pKa=4.75			
1) Is chloroacetic acid more or less acidic than bromoacetic acid? 2) Will its pKa be higher or lower than bromoacetic acid?			
A) 1.more 2.higher B) 1.1 less 2.10 wer C) 1.less 2 .higher D) 1.more 2.10 wer			

QUESTION
-Rank the following acids in order of decreasing acidity.
1) $\mathrm{Br}-\mathrm{CH}_{2} \mathrm{COOH}$, 2) $1-\mathrm{CH}_{3} \mathrm{COOH}$, 3) $\mathrm{CH}_{3} \mathrm{COOH}$ $p K a=2.69 \quad p K a=3.12$ $p K a=4.75$
A) $1>2>3$ B) $3>2>1$ C) $2>3>1$ ANSWER: $2>3>2>1$; LOWER pKa HIGHER Acidity

QUESTION

Ascorbic acid, also known as vitamin C, has two hydrogen atoms that ionize from the acid. $K \mathrm{a}_{1}=7.9 \times 10^{-5} ; \mathrm{K}_{\mathrm{a}_{2}}=1.6 \times$ 10^{-12}. What is the pH , and $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}_{6}{ }^{2-}$ concentration of a 0.10 M solution of $\mathrm{H}_{2} \mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}_{6}$?
A. 2.55; $\left[\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}_{6}{ }^{2-}\right]=0.050 \mathrm{M}$
B. $2.55 ;\left[\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}_{6}{ }^{2}{ }^{2}\right]=1.6 \times 10^{-12} \mathrm{M}$
C. $1.00 ;\left[\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}_{6}{ }^{2-}\right]=1.6 \times 10^{-12} \mathrm{M}$
D. $5.10 ;\left[\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}_{6}{ }^{2-}\right]=0.050 \mathrm{M}$

QUESTION

What is the pH of a solution made from adding 500. mL of $2.00 \mathrm{M} \mathrm{HOAc}_{\text {(aq) }}\left(K a=1,8 \times 10^{-5}\right)$ to $100 . \mathrm{mL}$ of 5.100 M $\mathrm{NaOH}_{(a q)}$?
(This question relates to the titration of acetic acid.)

A) 4.74
B) 4.76
C) 9.24
D) 9.26

QUESTION

What is the pH of a solution made from adding 500. mL of $2.00 \mathrm{M} \mathrm{HOAc}_{(a q)}\left(\mathrm{Ka}=1,8 \times 10^{-5}\right)$ to 100. mL of $5.100 \mathrm{M} \mathrm{NaOH}(\mathrm{aq})$?

A) 4.74
B) 4.76
C) 9.24
D) 9.26

QUESTION

Most acid-base indicators are weak acids. In a titration of 0.50 M acetic acid (at $\left.25^{\circ} \mathrm{C}, K_{\mathrm{a}}=1.8 \times 10^{-5}\right)$ with KOH , which indicator would best indicate the pH at the equivalence point? The approximate K_{a} for each choice is provided.
A. Bromophenol blue; $K_{\mathrm{a}} \sim 1 \times 10^{-4}$
B. Methyl red; $K_{\mathrm{a}} \sim 1 \times 10^{-5}$
C. Bromothymol blue; $K_{\mathrm{a}} \sim 1 \times 10^{-7}$
D. Alizarin yellow; $K_{\mathrm{a}} \sim 1 \times 10^{-10}$
 $+$

QUESTION

The acid-base indicator bromocresol purple has an interesting yellow-to-purple color change. If the approximate K_{a} of this indicator is 1.0×10^{-6}, what would be the ratio of purple [A^{-}] to yellow [HA] at a pH of 4.0 ?
A. 100:1
B. $1: 100$
C. $1: 1$
D. This choice indicates that I don't know.

