

Aniline, $C_6H_5NH_2,$ was isolated in the 1800s and began immediate use in the dye industry. What is the formula of the conjugate acid of this base?

- A. C₆H₅NH₂⁺
- B. C₆H₅NH₃⁺
- C. C₆H₅NH⁻
- D. C₆H₅NH⁺

	Acid-Base Strengths
ľ	<u>Strong Acid:</u> <u>Strong Base:</u>
ľ	<u>Weak Acid:</u> <u>Weak Base:</u>

F 1			[H ₃ O ⁺]	pH	[OH-]	рОН
The		<u> </u>	1.0 × 10 ⁻¹⁵	15.00	1.0 × 10 ¹	-1.00
Relations Among [H ₃ O ⁺], pH, [OH ⁻], and pOH	C		1.0 × 10 ⁻¹⁴	14.00	1.0×10^{0}	0.00
	MORE BASIC	BASIC	1.0×10^{-13}	13.00	1.0×10^{-1}	1.00
			1.0×10^{-12}	12.00	1.0×10^{-2}	2.00
	Ë		1.0 × 10 ⁻¹¹	11.00	1.0×10^{-3}	3.00
	¥		1.0×10^{-10}	10.00	1.0×10^{-4}	4.00
			1.0×10^{-9}	9.00	1.0×10^{-5}	5.00
			1.0×10^{-8}	8.00	1.0×10^{-6}	6.00
	\square	NEUTRA	L 1.0 × 10 ⁻⁷	7.00	1.0×10^{-7}	7.00
			1.0 × 10 ⁻⁶	6.00	1.0×10^{-8}	8.00
MORE ACIDIC	C	ACIDIC	1.0×10^{-5}	5.00	1.0×10^{-9}	9.00
	ē		1.0×10^{-4}	4.00	1.0×10^{-10}	10.00
	AC		1.0 × 10 ^{−3}	3.00	1.0×10^{-11}	11.00
	ᇣ	ACIDIC	1.0 × 10 ⁻²	2.00	1.0×10^{-12}	12.00
	9		1.0 × 10 ^{−1}	1.00	1.0×10^{-13}	13.00
	-		1.0×10^{0}	0.00	1.0×10^{-14}	14.00
		·	1.0 × 10 ¹	-1.00	1.0×10^{-15}	15.00

	The pH Sc	ale		
[H ⁺]	[OH-]	pН	рОН	acidi or basio
$7.5 \times 10^{-3} M$				
	$3.6 imes 10^{-10} M$			
		8.25		
			5.70	

	The pH S	Scale	2	
[H ⁺]	[OH-]	pН	рОН	acidic or basic?
$7.5 \times 10^{-3} M$	1.3 x10 ⁻¹²	2.1	11.9	Acid
2.8 x10 ⁻⁵	$3.6 imes 10^{-10} M$	4.6	9.4	Acid
5.62 x10 ^{- 9}	1.78 x10 ⁻⁶	8.25	5.75	Base
5.00 x10 ^{- 9}	2.00 x10 ^{- 6}	8.30	5.70	Base

Most acid-base indicators are weak acids. In a titration of 0.50 *M* acetic acid (at 25°C, $K_a = 1.8 \times 10^{-5}$) with KOH, which indicator would best indicate the pH at the equivalence point? The approximate K_a for each choice is provided.

- A. Bromophenol blue; $K_{\rm a} \sim 1 \times 10^{-4}$
- B. Methyl red; $K_a \sim 1 \times 10^{-5}$
- C. Bromothymol blue; $K_{\rm a} \sim 1 \times 10^{-7}$
- D. Alizarin yellow; $K_a \sim 1 \times 10^{-10}$

The			[H ₃ O ⁺]	pН	[OH-]	рОН
The		<u> </u>	1.0 × 10 ⁻¹⁵	15.00	1.0 × 10 ¹	-1.00
Relations	C		1.0 × 10 ⁻¹⁴	14.00	1.0×10^{0}	0.00
Among [H ₃ O ⁺], pH,	ASI	BASIC 1.0 × 1	1.0×10^{-13}	13.00	1.0×10^{-1}	1.00
	B		1.0×10^{-12}	12.00	1.0×10^{-2}	2.00
	MORE BASIC		1.0 × 10 ⁻¹¹	11.00	1.0×10^{-3}	3.00
OH⁻1.	M		1.0×10^{-10}	10.00	1.0×10^{-4}	4.00
			1.0 × 10 ⁻⁹	9.00	1.0×10^{-5}	5.00
nd pOH			1.0×10^{-8}	8.00	1.0×10^{-6}	6.00
	Н	NEUTRA	L 1.0 × 10 ⁻⁷	7.00	1.0×10^{-7}	7.00
			1.0 × 10 ⁻⁶	6.00	1.0×10^{-8}	8.00
	C		1.0×10^{-5}	5.00	1.0×10^{-9}	9.00
MORE ACIDIC	₫		1.0×10^{-4}	4.00	1.0×10^{-10}	10.00
	AC	ACIDIC	1.0×10^{-3}	3.00	1.0×10^{-11}	11.00
	띭	ACIDIC	1.0 × 10 ⁻²	2.00	1.0×10^{-12}	12.00
	Q		1.0 × 10 ⁻¹	1.00	1.0×10^{-13}	13.00
	2		1.0×10^{0}	0.00	1.0×10^{-14}	14.00
			1.0 × 10 ¹	-1.00	1.0×10^{-15}	15.00

11 1	Values of K _a for Some Common M	Ionoprotic Acids	
Formula	Name	Value of Ka*	
HSO ₄	Hydrogen sulfate ion	1.2×10^{-2}	1 I
HClO ₂ HC ₃ H ₃ ClO ₂	Chlorous acid Monochloracetic acid	1.2×10^{-2} 1.35×10^{-3}	th
HE HE	Hydrofluoric acid	7.2×10^{-4}	Increasing acid strength
HNO ₂	Nitrous acid	4.0×10^{-4}	d si
HC ₂ H ₃ O ₂	Acetic acid	1.8×10^{-5}	s ac
[Al(H ₂ O) ₆] ³⁺ HOCI	Hydrated aluminum(III) ion Hypochlorous acid	1.4×10^{-5} 3.5×10^{-8}	sing
HCN	Hydrocyanic acid	6.2×10^{-10}	Cica
NH4 ⁺	Ammonium ion	5.6×10^{-10}	
HOC ₆ H ₅	Phenol	1.6×10^{-10}	
vould have the <u>weal</u>	this table to determine $\underline{\text{cest}}$ conjugate acid: $OC_6H_5^-$; $C_2H_3O_2^-$;		C
		/	,

Strong vs.Weak Acids pH Estimations/ Calculations What are the respective pH values for a 0.100M

solution of HCl ($K_a = \infty$) and a 0.100M solution of HF ($K_a = 3.53 \times 10^{-4}$)?

- What are the respective equilibrium concentrations of H⁺ (H₃O⁺)?
- ▶ pH is calculated from the equilibrium concentration of H⁺ (H₃O)
- Using K_a, and the starting molarity of acid, the equilibrium concentration of H* (H₃O+) can be estimated and then pH); Strong acids 100%, pH=1.00, Weak: less than 100%

Which of the following correctly compares strength of acids, pH, and concentrations?

- A. A weak acid, at the same concentration of a strong acid, will have a lower pH.
- B. A weak acid, at the same concentration of a strong acid, will have the same pH.
- C. A weak acid, at a high enough concentration more than a strong acid, could have a lower pH than the strong acid.
- D. A weak acid, at a concentration below a strong acid, could have a lower pH than a strong acid.

Weak Acids K_a and Calculating pH

- Write the balanced chemical equation clearly showing the equilibrium.
- Write the equilibrium expression. Use the value for K_a
- Let x = [H+]; substitute into the equilibrium constant expression and solve.
- Convert [H+] to pH.

Equilibrium Concentration Calculations pH from Initial Concentrations and K_a What is the pH value for a 0.100M solution of HF ($K_a = 3.53 \times 10^{-4}$)? HF_(aq) \longrightarrow H⁺_(aq) + F⁻_(aq) $K_a = -\frac{[H^+] [F^-]}{[HF]}$

$Equilibrium Concentration HF_{(aq)} \leftrightarrows$	$Central H^+_{(aq)} + F^-$	ion (Calculati	ons		
Concentration (M)	HF	H+	F-			
Initial Change	0.100 0.100-x	0 +x	0 +x	_		
Final		x				
$K_{\rm c} = \frac{[{\rm H}^+][{\rm F}^-]}{[{\rm HF}]} = 3.53 \times 10^{-4} = \frac{{\rm x}^2}{(0.100 - {\rm x})}$						
3.53 x 10 ⁻⁴ (0.100 Quadratic: 0 = x ² + 3.53 x 10 ⁻⁴ x - 3.53 x=[H *] = 0.00805 <i>M</i> ; <i>pH</i> =	3 x 10 ⁻⁵ 2.09	3.53 x x= [3.	ied: $10^{-4} = \frac{x^2}{(0.10)^4}$ $10^{-4}(0.100)^{-4}$ $53 \times 10^{-4}(0.100)^{-4}$ 0.00594 M; p	$= x^2$ (00)] ^{1/2}		

K _a Values of Some Hydrated Metal lons a 25℃			
Ion	K _a		
F 3: ()	(10 3	Δ	
$Fe^{3+}(aq)$	6 x 10 ⁻³ 4 x 10 ⁻⁴		
Sn ²⁺ (aq) Cr ³⁺ (aq)	4 x 10 ⁻⁴		
Al^{3+} (aq)	1 x 10 ⁻⁵		
Be^{2+} (aq)	4 x 10 ⁻⁶		
Cu^{2+} (aq)	4×10^{-8} 3 x 10 ⁻⁸		
Pb^{2+} (aq)	3 x 10 ⁻⁸		
Zn^{2+} (aq)	1 x 10 ⁻⁹		
Co^{2+} (aq)	2 x 10 ⁻¹⁰		
Ni^{2+} (aq)	1 x 10 ⁻¹⁰		

Structure and Acid-Base Properties

- Two important factors that effect acidity in binary compounds, eg. HCl (aq):
- Bond Polarity (smaller e.n. differences favor higher acidities)
- Bond Strength (weak bonds favor higher acidity: more protons [hydronium ions] in solution)
- Select & explain which is the stronger acid: HBr vs. HF.

	QUESTION						
	 Rank 1.0M solutions of HBrO, HIO and HCIO in order of increasing acidity. 						
r	HBrO , $K_a = 2.1 \times 10^{-8}$ HIO , $K_a = 2.3 \times 10^{-11}$ HCIO , $K_a = 3.0 \times 10^{-8}$						
Γ.	A) HBrO < HIO < HClO B) HIO < HBrO < HClO						
	C) HClO < HBrO < HIO D) HIO < HClO < HBrO						
	ANSWER: B) HIO < HBrO < HClO (Increasing Ka values)						

Acid	Formula	K_a (25°C)
Acetic	CH ₃ COOH	1.8×10^{-5}
Chloroacetic	CH2CICOOH	1.4×10^{-3}
Dichloroacetic	CHCl2COOH	3.3×10^{-2}
Trichloroacetic	CCl ₃ COOH	2×10^{-1}

Strength of Acids
Br-CH₂COOH, I-CH₂COOH, CH₃COOH ▶ pKa=2.69 pKa=3.12 pKa=4.75
 Is chloroacetic acid more or less acidic than bromoacetic acid? Will its pKa be higher or lower than bromoacetic acid? A) 1.more 2.higher B) 1.less 2.lower C) 1.less 2.higher D) 1.more 2.lower

Ascorbic acid, also known as vitamin C, has two hydrogen atoms that ionize from the acid. $K_{a_1} = 7.9 \times 10^{-5}$; $K_{a_2} = 1.6 \times 10^{-12}$. What is the pH, and C₆H₆O₆²⁻ concentration of a 0.10 M solution of $H_2C_6H_6O_6$?

A. 2.55; $[C_6H_6O_6^{2-}] = 0.050 M$ B. 2.55; $[C_6H_6O_6^{2-}] = 1.6 \times 10^{-12} M$ C. 1.00; $[C_6H_6O_6^{-2-}] = 1.6 \times 10^{-12} M$ D. 5.10; $[C_6H_6O_6^{-2-}] = 0.050 M$

 Val
 His
 Leu
 Thr
 Pro
 Glu
 Glu

 1
 2
 3
 4
 5
 6
 7
 (a) Normal red blood cells and the primary structure of normal hemoglobin Val His Leu Thr Pro Val Glu . 1 2 3 4 5 6 7 (b) Sickled red blood cells and the pri structure of sickle-cell hemories

D

	QUES	TION	
2.00 M	the pH of a solution HOAc _(aq) (Ka = 1, Na s question relates	8 x 10 ⁻⁵) to 100. aOH _(aq) ?	mL of 5.100M
Solution containing weak acid and strong base	$OH^-+HX \longrightarrow X^-+H_2O \longrightarrow [H]$	Calculate X] and [X] + Use Ke, [HX], an [X] to calculate [F Equilibrium calculation	
A) 4.74	B) 4.76	C) 9.24	D) 9.26

The acid-base indicator bromocresol purple has an interesting yellow-to-purple color change. If the approximate K_a of this indicator is 1.0×10^{-6} , what would be the ratio of purple [A⁻] to yellow [HA] at a pH of 4.0?

A. 100:1

- B. 1:100
- C. 1:1
- D. This choice indicates that I don't know.