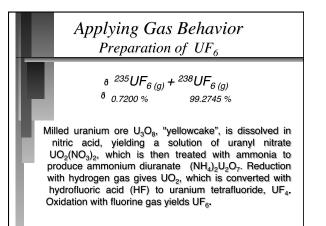


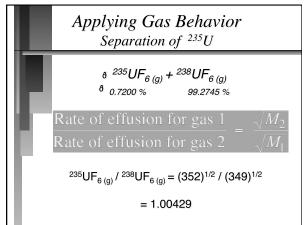
Diffusion and Effusion

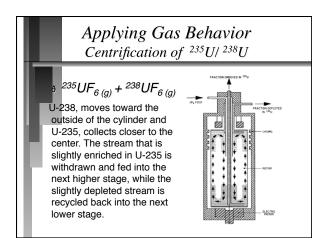
Diffusion: describes the mixing of gases. The rate of diffusion is the rate of gas mixing.

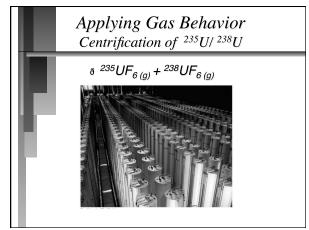
Effusion: describes the passage of gas into an evacuated chamber.

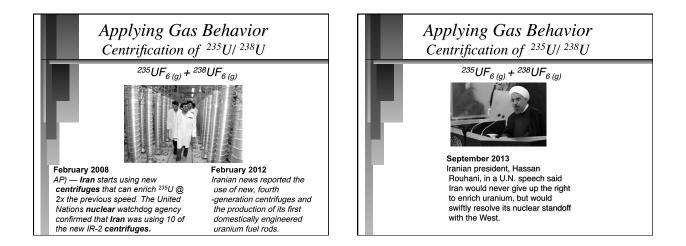


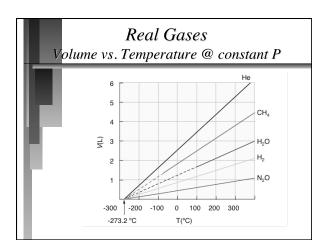

If ammonia gas is released into a tube at the same time that hydrogen chloride gas is released at the opposite end of the tube as illustrated below, the gases will react when they come in contact. This will occur:

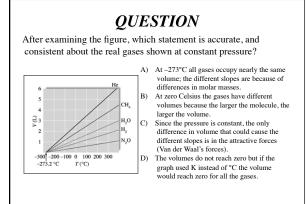


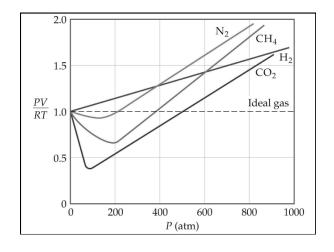

A) In the middle of the tube.


- B) Closer to the ammonia.
- C) Closer to the hydrogen chloride
- D) Never. The gases are too light and will never come in contact.



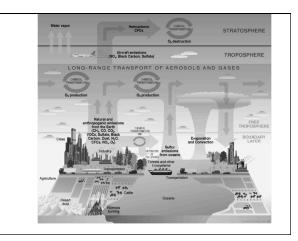

Applying Gas Behavior Centrification of ${}^{235}U/{}^{238}U$ ${}^{235}UF_{6(g)} + {}^{238}UF_{6(g)}$ ${}^{235}UF_{6(g)} + {}^{238}UF_{6(g)}$ 100

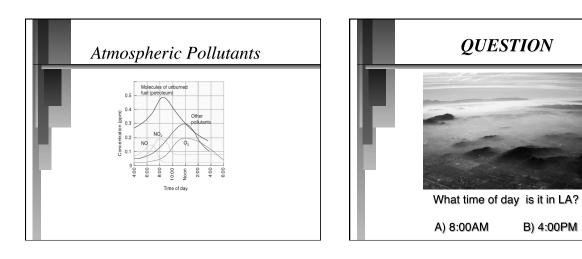

Real Gases

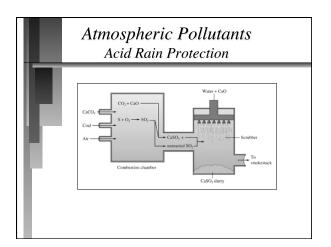

Must correct ideal gas behavior when at high pressure (smaller volume) and low temperature (attractive forces become important).

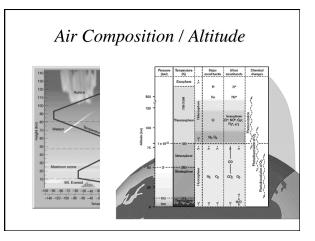
Rea	l Gases
Ŷ	$\begin{bmatrix} 2 \\ -nb \end{bmatrix} = nRT$ $\underbrace{Y}_{\text{corrected volume}}_{V_{\text{ideal}}}$

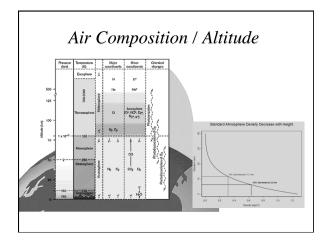
Substance	$a (L^2-atm/mol^2)$	b (L/mol)
He	0.0341	0.02370
Ne	0.211	0.0171
Ar	1.34	0.0322
Kr	2.32	0.0398
Xe	4.19	0.0510
H ₂	0.244	0.0266
N ₂	1.39	0.0391
O ₂	1.36	0.0318
Cl ₂	6.49	0.0562
H ₂ O	5.46	0.0305
CH_4	2.25	0.0428
CO ₂	3.59	0.0427
CCl ₄	20.4	0.1383




QUESTION


Real gases exhibit their most "ideal" behavior at which relative conditions?


- A) Low temperatures and low pressures
- B) High temperatures and high pressures
- C) High temperatures and low pressures
- D) Low temperatures and high pressures


spherie	c Pollu
Atmospheric Composition Near Sea Level (Dry Air)*	
Component	Mole Fraction
N ₂	0.78084
O2	0.20948
Ar	0.00934
CO_2	0.000345
Ne	0.00001818
He	0.00000524
CH_4	0.00000168
Kr	0.00000114
H ₂	0.0000005
NO	0.0000005
Xe	0.00000087
The atmosphere co	ntains various amou
	nding on conditions.

