

QUESTION

Four bicycle tires are inflated to the following pressures. Which one has the highest pressure? Tire A 3.42 atm ; Tire B $48 \mathrm{lbs} / \mathrm{sq} \mathrm{in}$; Tire C 305 kPa ; Tire D 1520 mmHg . (Recall; $1.00 \mathrm{~atm}=760$ $\mathrm{mmHg}=14.7 \mathrm{lb} / \mathrm{sq}$ in $=101.3 \mathrm{kPa}$)
A. Tire A
B. Tire B
C. Tire C
D. Tire D

Charles's Law

The volume of a gas is directly proportional to temperature, and extrapolates to zero at zero Kelvin.

д $\quad V=\alpha T \quad(P=$ constant $)$
$\alpha=$ a proportionality constant

The Meaning of Temperature

$$
(\mathrm{KE})_{\mathrm{avg}}=\frac{3}{2} R T
$$

Kelvin temperature is an index of the random motions of gas particles (higher T means greater motion.)

QUESTION

Kinetic molecular theory helps explain the definition of temperature based on molecular motion. Which statement describes an important aspect of this connection?
A) Temperature is inversely related to the kinetic energy of the gas particles.
B) At the same temperature, more massive gas particles will be moving faster than less massive gas particles.
C) As the temperature of a gas sample increases, the average velocity of the gas particles increases.
D) Kinetic energy is directly related to temperature. This is valid for any units of temperature.

Kinetic Molecular Theory

1. Volume of individual particles is \approx zero.
2. Collisions of particles with container walls cause pressure exerted by gas.
ð 3. Particles exert no forces on each other.

ょ 4. Average kinetic energy \propto Kelvin temperature of a gas.

QUESTION

Why is it critical that the temperature be held constant when applying Boyle's law to changing the pressure of a trapped gas?
A) Gas molecules may expand at higher temperatures; this would change the volume.
B) Changing the temperature causes the gas to behave in non-ideal fashion.
C) Changing the temperature affects the average particle speed, which could affect the pressure.
D) Allowing the temperature to drop below $0^{\circ} \mathrm{C}$ would cause the trapped gas to no longer follow Boyle's Law.

QUESTION

Each of the balloons hold 1.0 L of different gases. All four are at $25^{\circ} \mathrm{C}$ and each contains the same number of molecules. Of the following which would also have to be the same for each balloon? (obviously not their color)
A) Their density
B) Their mass
C) Their atomic numbers
D) Their pressure
at

