

If a person exhaled 125 mL of $\rm CO_2$ gas at 37.0°C and 0.950 atm of pressure, what would this volume be at a colder temperature of 10.0°C and 0.900 atm of pressure?

- A) 3.12 mL
- B) 0.130 L
- C) 0.120 L
- D) 22.4 L

QUESTION

If a $10.0\,\mathrm{L}$ sample of a gas at $25^{\circ}\mathrm{C}$ suddenly had its volume doubled, without changing its temperature what would happen to its pressure? What could be done to keep the pressure constant without changing the temperature?

- A) The pressure would double; nothing else could be done to prevent this.
- B) The pressure would double; the moles of gas could be doubled.
- C) The pressure would decrease by a factor of two; the moles of gas could be halved.
- D) The pressure would decrease by a factor of two; the moles could be doubled.

QUESTION

A typical total capacity for human lungs is approximately 5,800 mL. At a temperature of 37°C (average body temperature) and pressure of 0.98 atm, how many moles of air do we carry inside our lungs when inflated? (R = 0.08206 L atm/ K mol)

- A) 1.9 mol
- B) 0.22 mol
- C) 230 mol
- D) 2.20 mol
- E) 0 mol: Moles can harm a person's lungs.

An average pair of human lungs actually contains only about 3.5 L of air after inhalation and about 3.0 L after exhalation. Assuming that air in your lungs is at 37°C

- a) How many moles of O2 are actually in a typical
- b) What is the mass of O_2 in a typical breath?.
- c) How much of the O_2 is essential biochemically?

QUESTION

The primary source of exhaled CO2 is from the combustion of glucose, $C_6H_{12}O_6$ (molar mass = 180. g/mol.). The balanced equation is shown here:

$$\mathrm{C_6H_{12}O_6}\left(aq\right) + 6\,\mathrm{O_2}\left(g\right) \rightarrow 6\,\mathrm{CO_2}\left(g\right) + 6\,\mathrm{H_2O}\left(l\right)$$

If you oxidized 5.42 grams of $C_eH_{12}O_6$ while tying your boots to climb Mt. Everest, how many liters of O_2 @ STP conditions did you

- A) 0.737 L
- B) 0.672 L
- C) 4.05 L
- D) 22.4 L

Dalton's Law of Partial Pressures

For a mixture of gases, the total pressure is the sum of the pressures of each gas in the mixture.

$$P_{Total} = P_1 + P_2 + P_3 + \dots$$

$$n_{Total} = n_1 + n_2 + n_3 + \dots$$

Dalton's Law of Partial Pressures

For a mixture of gases, the partial gas pressure and total pressure equal the mole fraction of each gas in the mixture.

$$P_1 / P_{Total} = n_1 / n_{Total}$$

OUESTION

If the mole fraction of O2 in our atmosphere at standard conditions is approximately 0.209, what is the partial pressure of the oxygen in every breath you take?

- A) 1.00 atm
- B) 4.78 atm
- C) 159 torr
- D) 3640 mmHg

QUESTION

Under STP conditions what is the density of O2 gas?

- A) Not enough information is given to solve this.
- B) 1.31 g/L
- C) 1.43 g/L D) 0.999 g/L

QUESTION

Which sequence represents the gases in order of increasing density at STP?

- A) Fluorine < Carbon monoxide < Chlorine < Argon
- B) Carbon monoxide < Fluorine < Argon < Chlorine
- C) Argon < Carbon monoxide < Chlorine < Fluorine
- D) Fluorine < Chlorine < Carbon monoxide < Argon

Applying the Ideal Gas Law

The density of an unknown atmospheric gas pollutant was experimentally determined to be 1.964 g/L @ 0 °C and 760 torr.

- ·What is the molar mass of the gas?
- ·What might the gas be?

Applying the Ideal Gas Law

1.964 g/L @ 0 °C and 760 torr. $R = 0.08206 \text{ L atm } K^{-1} \text{ mol}^{-1}$ ${}^{o}C \rightarrow K$

torr → atm

 MM_{gas} = density of gas (RT/P) $MM_{gas} = 1.964 \text{ g/L} \times 0.08206 \text{ L atm } K^{-1} \text{ mol}^{-1}$ x 273K/ 760 torr x 760 torr/ 1atm

 $MM_{gas} = 44.0 \text{ g/mol}$

QUESTION

Freon-12 had been widely used as a refrigerant in air conditioning systems. However, it has been shown to be related to destroying Earth's important ozone layer. What is the molar mass of Freon-12 if 9.27 grams was collected **by water displacement**, in a 2.00 liter volume at 30.0°C and 764 mmHg. Water's vapor pressure at this temperature is approximately 31.8 mmHg.

- A) 120. g/mol
- B) 12.0 g/mol
- C) 115 g/mol
- D) 92.7 g/mol

QUESTION

The aroma of fresh raspberries can be attributed, at least in part, to 3-(para-hydroxyphenyl)-2-butanone. What is the molar mass of this pleasant smelling compound if at 1.00 atmosphere of pressure and 25.0°C, 0.0820 grams has a volume of 12.2 mL?

- A) 13.8 g/mol
- B) 164 g/mol
- C) 40.9 g/mol
- D) 224 g/mol

Diffusion and Effusion

Diffusion: describes the mixing of gases. The rate of diffusion is the rate of gas mixing.

Effusion: describes the passage of gas into an evacuated chamber.

Effusion and Diffusion Effusion: Rate of effusion for gas 1 Rate of effusion for gas 2 Diffusion: Distance traveled by gas 1 Distance traveled by gas 2 $\sqrt{M_1}$

Substance	$a (L^2-atm/mol^2)$	b (L/mol)
He	0.0341	0.02370
Ne	0.211	0.0171
Ar	1.34	0.0322
Kr	2.32	0.0398
Xe	4.19	0.0510
H_2	0.244	0.0266
N ₂	1.39	0.0391
O_2	1.36	0.0318
Cl ₂	6.49	0.0562
H ₂ O	5.46	0.0305
CH_4	2.25	0.0428
CO_2	3.59	0.0427
CCl_4	20.4	0.1383

