

QUESTION

If a person exhaled 125 mL of CO_{2} gas at $37.0^{\circ} \mathrm{C}$ and 0.950 atm of pressure, what would this volume be at a colder temperature of $10.0^{\circ} \mathrm{C}$ and 0.900 atm of pressure?
A) 3.12 mL
B) 0.130 L
C) 0.120 L
D) 22.4 L

QUESTION

If a 10.0 L sample of a gas at $25^{\circ} \mathrm{C}$ suddenly had its volume doubled, without changing its temperature what would happen to its pressure? What could be done to keep the pressure constant without changing the temperature?
A) The pressure would double; nothing else could be done to prevent this.
B) The pressure would double; the moles of gas could be doubled.
C) The pressure would decrease by a factor of two; the moles of gas could be halved.
D) The pressure would decrease by a factor of two; the moles could be doubled.

QUESTION

A typical total capacity for human lungs is approximately $5,800 \mathrm{~mL}$. At a temperature of $37^{\circ} \mathrm{C}$ (average body temperature) and pressure of 0.98 atm , how many moles of air do we carry inside our lungs when inflated? $(\mathrm{R}=0.08206 \mathrm{~L} \mathrm{~atm} / \mathrm{K} \mathrm{mol})$
A) 1.9 mol
B) 0.22 mol
C) 230 mol
D) 2.20 mol
E) 0 mol : Moles can harm a person's lungs.

Do you have enough oxygen to climb Mt. Everest? http://www.chemcollective.org/applets/everest.php

QUESTION

The primary source of exhaled CO_{2} is from the combustion of glucose, $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ (molar mass $=180 . \mathrm{g} / \mathrm{mol}$.). The balanced equation is shown here:

$$
\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(a q)+6 \mathrm{O}_{2}(g) \rightarrow 6 \mathrm{CO}_{2}(g)+6 \mathrm{H}_{2} \mathrm{O}(l)
$$

If you oxidized 5.42 grams of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ while tying your boots to climb Mt. Everest, how many liters of O_{2} @ STP conditions did you use?
A) 0.737 L
B) 0.672 L
C) 4.05 L
D) 22.4 L

Dalton's Law of Partial Pressures

For a mixture of gases, the partial gas pressure and total pressure equal the mole fraction of each gas in the mixture.

$$
P_{1} / P_{\text {Total }}=n_{1} / n_{\text {Total }}
$$

QUESTION

If the mole fraction of O_{2} in our atmosphere at standard conditions is approximately 0.209 , what is the partial pressure of the oxygen in every breath you take?
A) 1.00 atm
B) 4.78 atm
C) 159 torr
D) 3640 mmHg

QUESTION

Under STP conditions what is the density of O_{2} gas?
A) Not enough information is given to solve this.
B) $1.31 \mathrm{~g} / \mathrm{L}$
C) $1.43 \mathrm{~g} / \mathrm{L}$
D) $0.999 \mathrm{~g} / \mathrm{L}$

QUESTION

Which sequence represents the gases in order of increasing density at STP?
A) Fluorine < Carbon monoxide < Chlorine < Argon B) Carbon monoxide < Fluorine < Argon < Chlorine C) Argon < Carbon monoxide < Chlorine < Fluorine D) Fluorine < Chlorine < Carbon monoxide < Argon

Applying the Ideal Gas Law
The density of an unknown atmospheric gas pollutant was experimentally determined to be $1.964 \mathrm{~g} / \mathrm{L}$ @ $0^{\circ} \mathrm{C}$ and 760 torr. -What is the molar mass of the gas? •What might the gas be?

QUESTION

Freon-12 had been widely used as a refrigerant in air conditioning systems. However, it has been shown to be related to destroying Earth's important ozone layer. What is the molar mass of Freon-12 if 9.27 grams was collected by water displacement, in a 2.00 liter volume at $30.0^{\circ} \mathrm{C}$ and 764 mmHg . Water's vapor pressure at this temperature is approximately 31.8 mmHg .
A) $120 . \mathrm{g} / \mathrm{mol}$
B) $12.0 \mathrm{~g} / \mathrm{mol}$
C) $115 \mathrm{~g} / \mathrm{mol}$
D) $92.7 \mathrm{~g} / \mathrm{mol}$

QUESTION

The aroma of fresh raspberries can be attributed, at least in part, to 3-(para-hydroxyphenyl)-2-butanone. What is the molar mass of this pleasant smelling compound if at 1.00 atmosphere of pressure and $25.0^{\circ} \mathrm{C}, 0.0820$ grams has a volume of 12.2 mL ?
A) $13.8 \mathrm{~g} / \mathrm{mol}$
B) $164 \mathrm{~g} / \mathrm{mol}$
C) $40.9 \mathrm{~g} / \mathrm{mol}$
D) $224 \mathrm{~g} / \mathrm{mol}$

QUESTION

After examining the figure, which statement is accurate, and consistent about the real gases shown at constant pressure?

A) At $-273^{\circ} \mathrm{C}$ all gases occupy nearly the same volume; the different slopes are because of differences in molar masses.
B) At zero Celsius the gases have different volumes because the larger the molecule, the larger the volume.
Since the pressure is constant, the only difference in volume that could cause the different slopes is in the attractive forces (Van der Waal's forces).
D) The volumes do not reach zero but if the graph used K instead of ${ }^{\circ} \mathrm{C}$ the volume graph used K instead of ${ }^{\circ} \mathrm{C}$ the volu
would reach zero for all the gases.

QUESTION

Real gases exhibit their most "ideal" behavior at which relative conditions?
A) Low temperatures and low pressures
B) High temperatures and high pressures
C) High temperatures and low pressures
D) Low temperatures and high pressures

