

Ideal Gas Law

$\mathrm{PV}=\mathrm{n} R T$

- $\quad \mathbf{R}=$ proportionality constant
$=0.08206 \mathrm{~L} \mathrm{~atm} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
- $\quad \mathbf{P}=$ pressure in atm
- $\quad \mathbf{V}=$ volume in liters
- $\mathbf{n}=$ moles
- $\quad \mathbf{T}=$ temperature in Kelvins

Standard Temperature and Pressure - "STP"

- For 1 mole of a gas at STP:
- $\mathrm{P}=1$ atmosphere
- $\mathrm{T}=0^{\circ} \mathrm{C}$
- The molar volume of an ideal gas is 22.42 liters at STP

\% Mg \& the Ideal Gas Law
 $\mathrm{n}_{\mathrm{H}_{2}(\mathrm{~g})}=\mathrm{PV} / \mathrm{RT}$

- $\mathrm{n}=$ moles $\mathrm{H}_{2}(\mathrm{~g})$
- $\mathbf{P ~}_{\mathrm{H}_{2}(\mathrm{~g})}=$ pressure of $\mathrm{H}_{2}(\mathrm{~g})$ in atm $(\mathrm{mm} \mathrm{Hg} \rightarrow$ atm)
- $\mathbf{V}=$ experimental volume $(\mathbf{m L} \rightarrow \mathbf{L})$
- $\mathbf{T}=$ experimental temperature $\left({ }^{\circ} \mathbf{C} \rightarrow \mathbf{K}\right)$
$\mathrm{Mg}(\mathrm{s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{MgCl}_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$
$\mathrm{Zn}(\mathrm{s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{ZnCl}_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$
total moles $\mathbf{H}_{\mathbf{2}}(\mathrm{g})=$ moles $\mathbf{M g}(\mathrm{s})+$ moles $\mathrm{Zn}(\mathrm{s})$

Dalton's Law of
 Partial Pressures

- For a mixture of gases, the total pressure is the sum of the pressures of each gas in the mixture.
$\mathrm{P}_{\text {Total }}=\mathrm{P}_{1}+\mathrm{P}_{2}+\mathrm{P}_{3}+\ldots$

$n_{\text {Total }}=n_{1}+n_{2}+n_{3}+\ldots$

Applications of the Ideal Gas Law

- $\mathrm{PV}=\mathrm{n}$ RT
- $\mathrm{n}=\mathrm{g}$ of gas/ $\mathrm{MM}_{\text {gas }}\left[\mathrm{MM}_{\text {gas }}=\mathrm{g} / \mathrm{mol}\right]$
- $\mathrm{PV}=\left(\mathrm{g}\right.$ of gas/ $\left.\mathrm{MM}_{\text {gas }}\right) \mathrm{RT}$
- $\mathrm{MM}_{\text {gas }}=\mathrm{g}$ of $\operatorname{gas}(\mathrm{RT}) / \mathrm{PV}$
- $\mathrm{MM}_{\mathrm{gas}}=\mathrm{g}$ of gas/V (RT/P)
- $\mathrm{MM}_{\text {gas }}=$ density of gas (RT/P)

QUESTION

Freon-12 had been widely used as a refrigerant in air conditioning systems. However, it has been shown to be a greenhouse gas and destroy the ozone layer. What is the molar mass of Freon-12 if 9.27 grams was collected by water displacement, in a 2.00 liter volume at $30.0^{\circ} \mathrm{C}$ and 764 mmHg . Water's vapor pressure at this temperature is approximately 31.8 mmHg .
A) $120 . \mathrm{g} / \mathrm{mol}$
B) $12.0 \mathrm{~g} / \mathrm{mol}$
C) $115 \mathrm{~g} / \mathrm{mol}$
D) $92.7 \mathrm{~g} / \mathrm{mol}$

