

QUESTION

In a redox reaction, oxidation and reduction must both occur. Which statement provides an accurate premise of redox chemistry?
A.The substance that is oxidized must be the oxidizing agent.
B. The substance that is oxidized must gain electrons.
C. The substance that is oxidized must have a higher
oxidation number afterwards.
D.The substance that is oxidized must combine with oxygen.

QUESTION

In which of the following does nitrogen have an oxidation state of +4 ?
A) HNO_{3}
B) NO_{2}
C) $\mathrm{N}_{2} \mathrm{O}$
D) $\mathrm{NH}_{4} \mathrm{Cl}$
E) NaNO_{2}

QUESTION

What is the oxidation number of chromium in ammonium dichromate?
A) +3
B) +4
C) +5
D) +6

QUESTION

How many of the following are oxidationreduction reactions?

$$
\begin{aligned}
& \mathrm{NaOH}+\mathrm{HCl} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O} \\
& \mathrm{Cu}+2 \mathrm{AgNO}_{3} \rightarrow 2 \mathrm{Ag}+\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \\
& \mathrm{Mg}(\mathrm{OH})_{2} \rightarrow \mathrm{MgO}+\mathrm{H}_{2} \mathrm{O} \\
& \mathrm{~N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3}
\end{aligned}
$$

A) 0
B) 1
C) 2
D) 3
E) 4

QUESTION

Select all redox reactions by looking for a change in oxidation number as reactants are converted to products.
I) $\mathrm{Ca}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{H}_{2}$
II) $\mathrm{CaO}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}$
III) $\mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{H}_{3} \mathrm{PO}_{4} \rightarrow \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}+\mathrm{H}_{2} \mathrm{O}$
IV) $\mathrm{Cl}_{2}+2 \mathrm{KBr} \rightarrow \mathrm{Br}_{2}+2 \mathrm{KCl}$
$\begin{array}{llll}\text { A) I and II } & \text { B) II and III } & \text { C) I and IV } & \text { D) III and IV }\end{array}$

QUESTION

In the reaction $2 \mathrm{Cs}(\mathrm{s})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CsCl}(\mathrm{s}), \mathrm{Cl}_{2}$ is
A. the reducing agent.
B. the oxidizing agent.
C. oxidized.
D. the electron donor.
E. two of these

QUESTION

Dichromate ion in acidic medium converts ethanol, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$, to CO_{2} according to the unbalanced equation:

$$
\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}(a q)+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(a q) \rightarrow \mathrm{Cr}^{3+}(a q)+\mathrm{CO}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(\Omega)
$$

The coefficient for H^{+}in the balanced equation using smallest integer coefficients is:
A) 8
B) 10
C) 13
D) 16

Balancing Redox Equations

in basic solutions

1) Determine oxidation numbers of atoms in Reactants and Products
2) Identify and select out those which change oxidation number into separate "half reactions"
3) Balance redox atoms and charges (electron gain and loss must equa!!)
4) In basic reactions balance the Oxygen with hydroxide then Hydrogen from hydroxide with water

QUESTION

Oxalate ion can be found in rhubarb and spinach (among other green leafy plants). The following unbalanced equation carried out in a basic solution, shows how MnO_{4}^{-}could be used to analyze samples for oxalate.

$$
\mathrm{MnO}_{4}^{-}+\mathrm{C}_{2} \mathrm{O}_{4}^{2-} \rightarrow \mathrm{MnO}_{2}+\mathrm{CO}_{3}^{2-} \quad \text { (basic solution) }
$$

When properly balanced, how many OH^{-}are present?
A. 1
B. 2
C. 3
D. 4

