
### **QUESTION** Atoms having greatly differing electronegativities are expected to form: 1) no bonds. 2) polar covalent bonds. 3) nonpolar covalent bonds. 4) ionic bonds. 5) covalent bonds.





### Lewis Structure

- Shows how valence electrons are arranged among atoms in a molecule.
- Reflects central idea that stability of a compound relates to noble gas electron configuration.
- Shows bonds in molecules and relates to 3-dimensional shapes in structures



### Octet Rule: General Comments

2nd row elements C, N, O, F observe the octet rule.

- 2nd row elements B and Be often have fewer than 8 electrons around themselves - they are very reactive.
- 3rd row and heavier elements CAN exceed the octet rule using empty valence d orbitals.
- When writing Lewis structures, satisfy octets first, e1 then place electrons around elements having available d orbitals.

# **QUESTION**

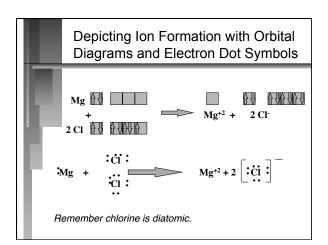
Which of the following atoms cannot exceed the octet rule in a molecule?

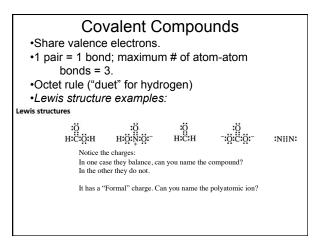
A) N

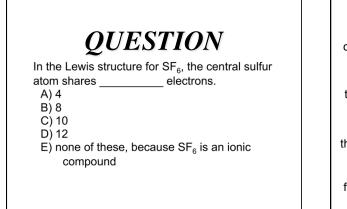
B) S C) P

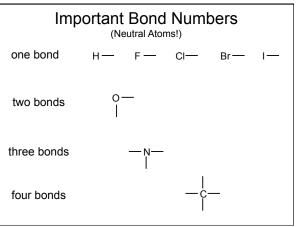
- D) I
- E) All of the atoms (1–4) can exceed the octet rule.

#### Lewis Electron-Dot Symbols for Elements in Periods 2 & 3 2A(2) 3A(13) 4A(14) 5A(15) 6A(16) 7A(17) 8A(18) 1A(1) ns<sup>2</sup>np<sup>2</sup> ns<sup>2</sup>np<sup>1</sup> ns<sup>2</sup>np<sup>5</sup> ns<sup>2</sup>np<sup>6</sup> ns<sup>2</sup>np<sup>3</sup> ns<sup>2</sup>np<sup>4</sup> ns<sup>1</sup> ns<sup>2</sup> 2 •Be• • В • :Ne: ۰Li :0 : F : Period ... :s • CI: Ar: • AI • 3 ۰Na •Mg• • Si • • P


#### Depicting ion formation with orbital diagrams and electron dot symbols


Problem: Use orbital diagrams and Lewis structures to show the formation of magnesium chloride from its ions starting with the respective atoms.


Step 1: Draw the orbital diagrams for Mg and Cl atoms.


To reach completely filled, stable electronic configurations each Mg atom loses 2 electrons, and each Cl atom gains 1 electron. Therefore there are two Cl<sup>-</sup> ions for every one Mg<sup>2+</sup> ion.

Step 2: Draw the orbital diagrams for the Mg  $^{2+}$  cation and 2  $\rm Cl^$ anions.





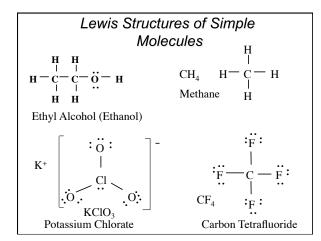


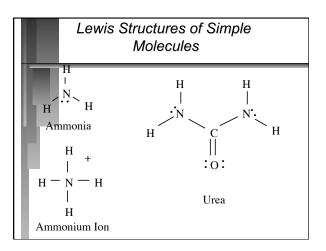


In the Lewis structure for elemental nitrogen there is (are):

A) a single bond between the nitrogens.

B) a double bond between the nitrogens.


- C) a triple bond between the nitrogens. D) three unpaired electrons.


E) none of these.

### Lewis Structures of Simple **Covalently Bonded Molecules**

Draw Lewis Structures for the following:

- CH<sub>3</sub>CH<sub>2</sub>OH Ethyl alcohol (Ethanol)
  - CH<sub>4</sub> Methane
  - $CF_4$ Carbon Tetrafluoride
  - KClO<sub>3</sub> Potassium Chlorate





The formaldehyde compound, also known as methanal, has been linked to indoor air pollution and related health effects. It can be used in some cases as a disinfectant and is found in some resins and glues. The correctly drawn Lewis structure of  $H_2CO$  would have how many unshared electrons?

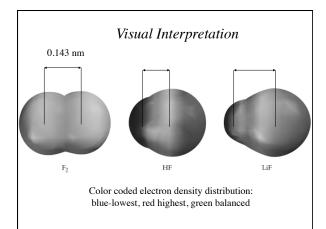
- A. Zero unshared e-
- B. One unshared e-
- C. Two unshared e-
- D. Four unshared e-

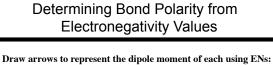
### **QUESTION**

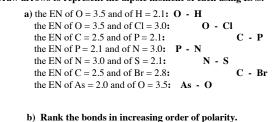
Dinitrogen monoxide has several uses ranging from a dentistry anesthetic to automobile racing enhancement. Starting with two possible basic structures given here, diagram two different Lewis structures. If your first structure contains four unbonded electrons around oxygen and your second structure contains six unbonded electrons around oxygen, how many bonds would be between the N atoms in the first and second compounds?

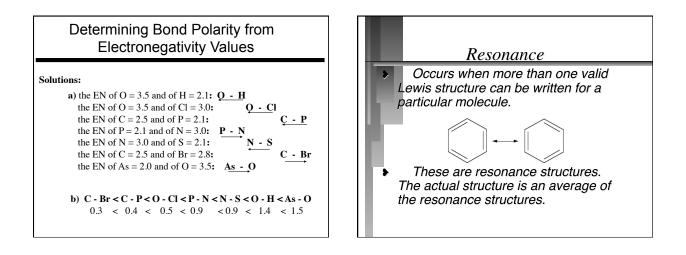
N–N–O N–N–O

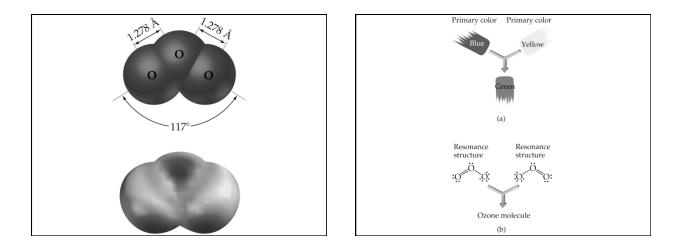
A. 2,3 B. 1,3 C. 2,2 D. 1,2

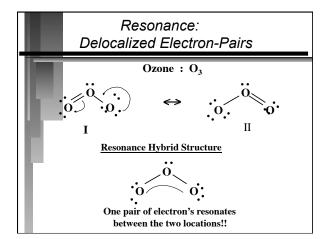

### Formal Charge

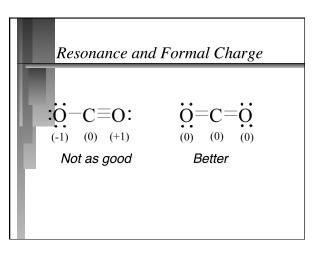

Equals the number of valence electrons of the free atom minus [the number of unshared valence electrons in the molecule + 1/2 the number of shared valence electrons in the molecule].

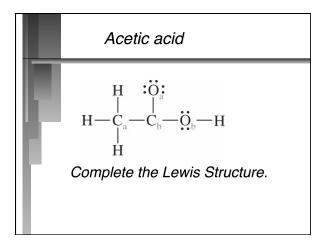

### **QUESTION**

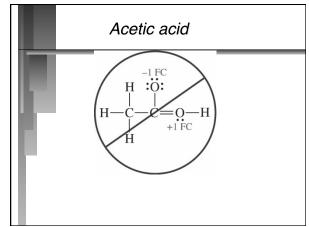

The  $N_2O$  molecule has sometimes found use as an aerosol propellant. One structure that satisfies the Lewis electron dot rules is N=N=O. In this case, what would be the formal charge of the middle N atom?

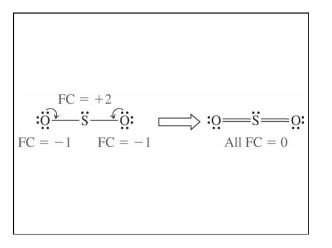

- A. Zero
- B. +1 C. -1
- D. I am not sure how to determine the formal charge on an atom in a compound.

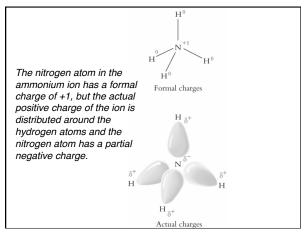








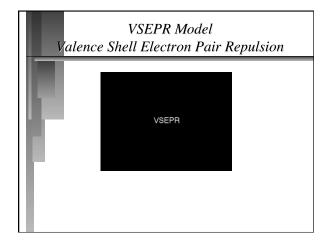






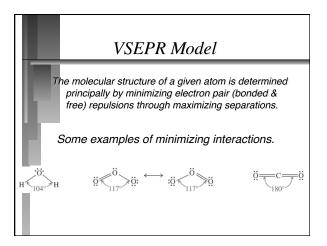

- 1. Description of valence electron arrangement (Lewis structure).
- 2. Prediction of geometry (VSEPR model).
- 3. Description of atomic orbital types used to share electrons or for lone pairs.
- Coupled with molecular orbital theory, highly reliable conceptual images of molecular shape can be obtained.

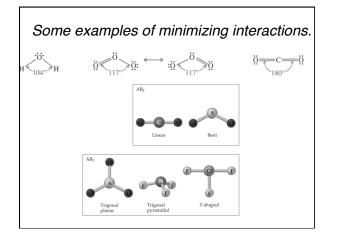
Biologically the NO molecule plays several important roles in human physiology. Of particular importance and interest is its role in maintaining blood flow and pressure. A properly diagramed Lewis structure of NO would have how many  $e^-$  not involved in bonding?

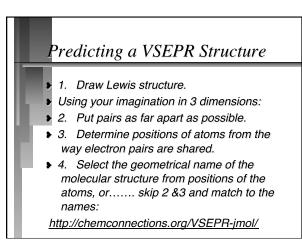

- A. Zero
- B. Three
- C. Five
- D. Seven

### Formal Charge

- Equals the number of valence electrons of the free atom minus [the number of unshared valence electrons in the molecule + 1/2 the number of shared valence electrons in the molecule].
- Adding/subtracting atoms and electrons.


Formal charge = number of valence electrons – (number of lone pair electrons +1/2 number of bonding electrons)


Formal charge = 5 - (3+1/2 4) = 0

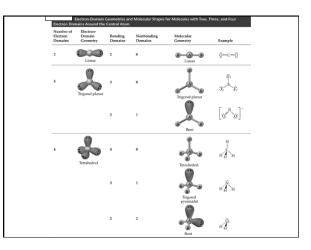


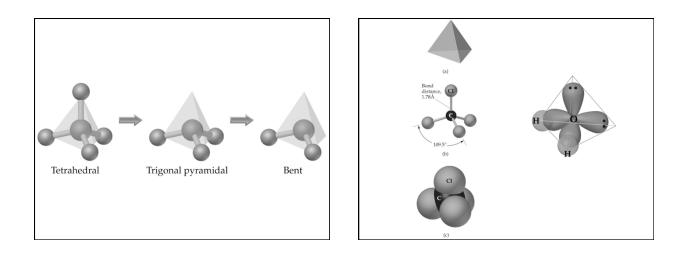

### VSEPR Model

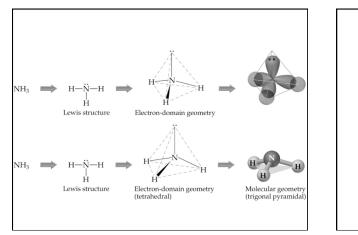
The molecular structure which surrounds a given atom is determined principally by minimizing electron pair repulsions through maximizing separations.





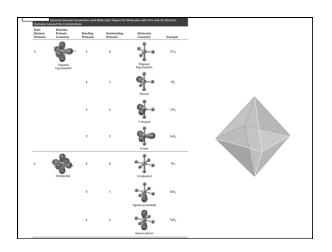



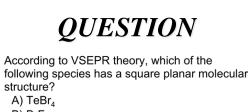


|               | Orbital<br>Geometry  | Molecular<br>Geometry           | B           | ond Ang          | le    |      |     | # of I | one pairs |
|---------------|----------------------|---------------------------------|-------------|------------------|-------|------|-----|--------|-----------|
| Important     | Linear               | Linear                          |             | $180^{\circ}$    | 0.0.0 |      |     |        | 0         |
| in<br>Organic | Trigonal Planar      | Trigonal P                      | lanar       | $120^{\circ}$    |       | . e. |     |        | 0         |
| Compound      | Trigonal Planar      | Bent                            |             | ${<}120^{\circ}$ |       |      | 000 |        | 1         |
|               | Tetrahedral          |                                 | Tetrahedral | 000              |       |      |     | 0      |           |
|               | Tetrahedral          | Trigonal Pyramidal <sup>o</sup> |             |                  |       |      |     |        | 1         |
|               | Tetrahedral          |                                 | Bent <      | <109.5°          |       |      | 000 |        | 2         |
|               | Trigonal Bipyramidal | Trigonal Bipyramidal 120°, 90°  |             |                  |       |      |     |        | 0         |
|               | Trigonal Bipyramidal | Seesaw                          | <120        | °,<90°           |       | 3    | 000 |        | 1         |
|               | Trigonal Bipyramidal | T-shape                         |             | <90°             |       |      |     |        | 2         |
|               | Trigonal Bipyramidal | Linear                          |             | $180^{\circ}$    |       |      |     | 0      | 3         |
|               | Octahedral           |                                 | Octahedral  | 90°              | 808   |      |     |        | 0         |
|               | Octahedral           |                                 | Square Pyra | midal)°          |       | 828  |     |        | 1         |
|               | Octahedral           |                                 | Square Plan | ar 90°           |       |      | -   |        | 2         |


The compound  $BF_3$  can react with silicon to help etch computer chips. After diagraming the complete Lewis structure for this compound, determine its shape and provide one of the following names for the shape you drew.

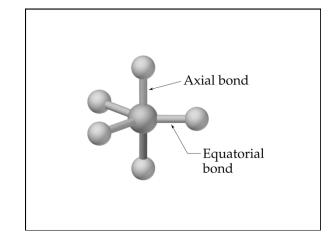
- A. Trigonal planarB. Trigonal bipyramidalC. T–shapedD. Linear

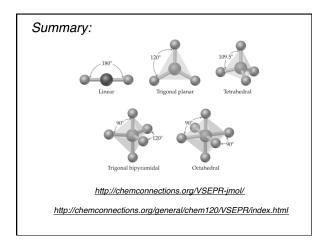




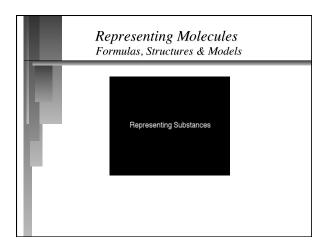



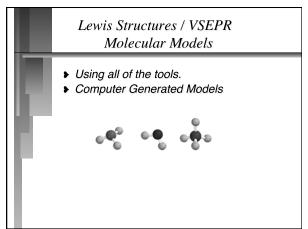




The bond angle in H<sub>2</sub>Se is about: A) 120°. B) 60°. C) 180°. D) 109°.


- E) 90°.

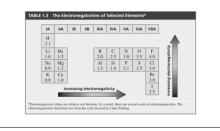


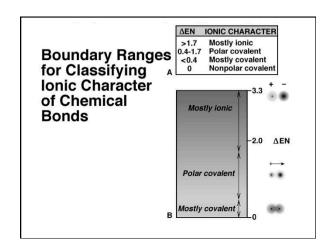




A)  $\operatorname{FeBI}_4$ B)  $\operatorname{BrF}_3$ C)  $\operatorname{IF}_5$ D)  $\operatorname{XeF}_4$ E)  $\operatorname{SCI}_2$ 

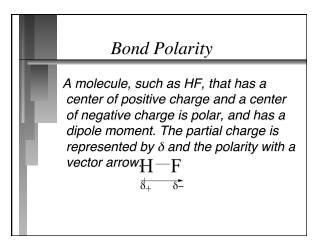


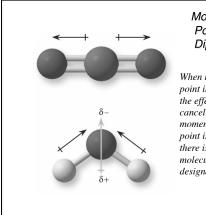



16



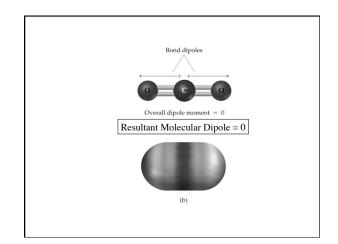




### Covalent Compounds


•Equal sharing of electrons: nonpolar covalent bond, same electronegativity (e.g., H<sub>2</sub>)
• Unequal sharing of electrons between atoms of different electronegativities: polar covalent bond (e.g., HF)

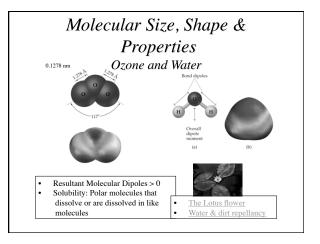


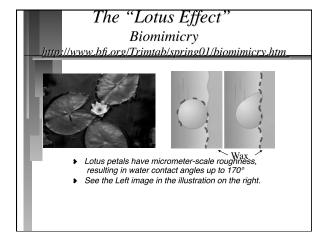


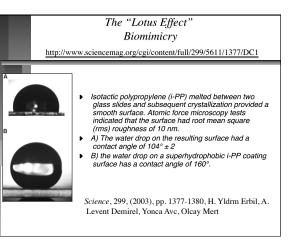

| ipole r                                                                          | d Dipole &<br>noments are ex<br>plar bonds have<br>dipole moment                                               | perimenta<br>dipole m                            | ally measured oments.                |
|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------|--------------------------------------|
| (-)                                                                              |                                                                                                                | ( ) (                                            |                                      |
| (e):                                                                             | magnitude of the o                                                                                             | charge on ti                                     | ne atom                              |
|                                                                                  |                                                                                                                |                                                  |                                      |
| ( <b>d</b> ) :                                                                   | distance between                                                                                               | the two cha                                      | arges                                |
|                                                                                  | distance between<br>The Dipole Moments of Some                                                                 |                                                  | 0                                    |
|                                                                                  |                                                                                                                |                                                  | 0                                    |
| Table 1.4                                                                        | The Dipole Moments of Some                                                                                     | e Commonly Encou                                 | untered Bonds                        |
| Table 1.4<br>Bond                                                                | The Dipole Moments of Some<br>Dipole moment (D)                                                                | e Commonly Encou<br>Bond                         | untered Bonds<br>Dipole moment (D)   |
| Table 1.4<br>Bond<br>H—C                                                         | The Dipole Moments of Some<br>Dipole moment (D)<br>0.4                                                         | e Commonly Encou<br>Bond<br>C—C                  | Untered Bonds Dipole moment (D) 0    |
| Table 1.4<br>Bond<br>H—C<br>H—N                                                  | The Dipole Moments of Some<br>Dipole moment (D)<br>0.4<br>1.3                                                  | e Commonly Encou<br>Bond<br>C—C<br>C—N           | Dipole moment (D)<br>0<br>0.2        |
| Table 1.4BondH-CH-NH-O                                                           | The Dipole Moments of Some<br>Dipole moment (D)<br>0.4<br>1.3<br>1.5                                           | e Commonly Encou<br>Bond<br>C-C<br>C-N<br>C-O    | Dipole moment (D)<br>0<br>0.2<br>0.7 |
| Table 1.4           Bond           H—C           H—N           H—O           H—F | The Dipole Moments of Some           Dipole moment (D)           0.4           1.3           1.5           1.7 | e Commonly Encou<br>Bond<br>CC<br>CN<br>CO<br>CF | 0<br>0.2<br>0.7<br>1.6               |

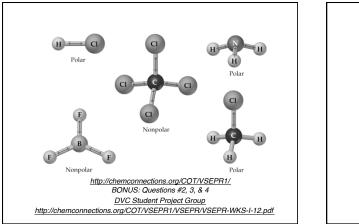


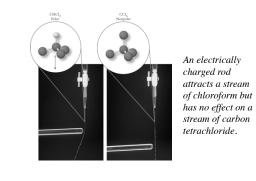



#### Molecular Polarity & Dipole Moment


When identical polar bonds point in opposite directions, the effects of their polarities cancel, giving no net dipole moment. When they do not point in opposite directions, there is a net effect and a net molecular dipole moment, designated  $\delta$ .

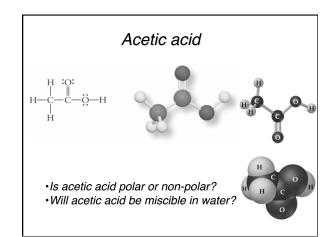




The bonds between carbon and oxygen in CO2 and the bonds between carbon and oxygen in acetic acid have exactly the same difference in electronegativity. Yet CO2 is a non-polar gas, whereas acetic acid is polar. Which statement provides a factual reason for this difference?


- A. CO<sub>2</sub> has no dipole moment because the symmetry of the C-O bonds places them 180°C apart; thus, the polarity predicted in the bonds is cancelled by molecular shape. Since acetic acid is polar, the shape must not allow for canceling the bond polarity.
- B. Polarity in a bond does not always predict polarity in a molecule because the dipole moment could be increased causing the molecule to be less polar.
- С. The partial negative charge of each oxygen, compared to carbon, is decreased in  $CO_2$  because it gets shared among two atoms. The C–O bond in acetic acid remains polar because the other parts of
- D. the molecule form a tetrahedron.







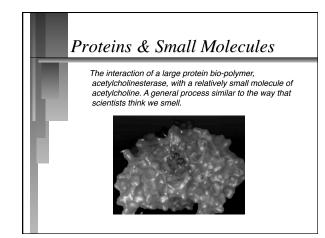


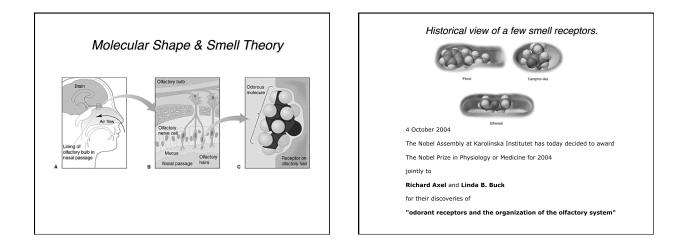



Which of the following molecules has a dipole moment? A)  $BCl_3$ B)  $SiCl_4$ 

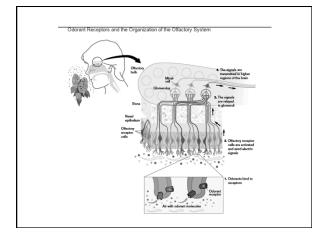
- C)  $PCI_3$ D)  $CI_2$
- E) none of these




| <b>QUESTION</b> |
|-----------------|
|-----------------|


How many of the following molecules possess dipole moments?

BH<sub>3</sub>, CH<sub>4</sub>, PCI<sub>5</sub>, H<sub>2</sub>O, HF, H<sub>2</sub>


| A) | 1 |
|----|---|
| B) | 2 |
| C) | 3 |
| D) | 4 |

E) 5









| - 1   | ALKANSS         |                     | ALKENES       | ALCOHOLS        |                    | ALDENYDES |                   |          | KETONES |                | CARBORYLIC ACIDS    |              | HAGORIKANES    |                | THIOLS            | AMINES       |              | MTRUES   | LACTONIS                 |             |             |
|-------|-----------------|---------------------|---------------|-----------------|--------------------|-----------|-------------------|----------|---------|----------------|---------------------|--------------|----------------|----------------|-------------------|--------------|--------------|----------|--------------------------|-------------|-------------|
|       | -2.00           | cyclo<br>-ana       | -000          | -anal           | -an-2-el           | -anal     | 2-methyl<br>-anal | ******** | -enal   | -an2-one       | methyl<br>-an-2-ane | -analicacid  | -maicadd       | chiara<br>-ane | -ane              | iodo<br>-ana | -anethiol    | ananite  | -200                     | -anenitrite | -andida     |
|       | -               |                     |               | NORAL R         |                    |           |                   |          |         |                |                     | <u>A</u> .   |                | <u> </u>       | 9                 | 0.0          | 法回           | <b>1</b> | ,                        | 10          |             |
| [     | -               |                     | Om            | ABSOLUT         |                    | PRATIC    | dorse'l sold      |          |         |                |                     | vegan        |                | MADLY          |                   |              | Passa .      | -        | -                        | 1           |             |
|       |                 | 1                   | 1 m           | ABSOLUT         | PLONG ST           | 12        | CENER             | Practs   |         | Ê.             | downer's maked      | A Gently     | INAPP          | MLDLY          | Que               |              | -            | 1        | -                        | A           |             |
|       |                 | N                   | Ma            | C1              | in                 | 3         | SPR.              | dil-     |         | -              | unites.             | MANCO BUTTLE | -              | anar           | 0.0               | STARE .      | 1 mm         | alle.    | CANDER                   |             | 0           |
|       | 111             | N MARKET            | 00            | ( U             | 10.00              | 489.      | Alle              | Adr      |         | 10             | 1000                | (B)          |                | MLD            | ENTET             | 18           | aning        | 100      | -                        | 0           | <i>3</i> 6. |
| - 1   | FLATO           | - 00<br>- 00        | 00            | THEFT           | 220                | PREDACY   | GRANE .           |          |         | 100            | -                   | BOATS        | 100            |                | EVERT             | Ø            | and a        |          | allogader .              | 警           | 900C,       |
| -     | rijio           | Same?               | 00            | CRASS           | T                  | and a     | out of            | ,        | 0       | (Car)          | 2305                | MI           | Manufacture of | Moure<br>120   | BARET (C)         | -            | - PERFORMENT | 100      | ADITING<br>FIEN<br>TOXIC | 幾个          | 1.60        |
| -     |                 | ~~                  | R             | Transi<br>Press | a) ala             | See.      | 13                | ,        |         | disearch model |                     |              | 1              | SP.            | AMOMM/1C          | • Ø          | 20           | And a    | APIOMATIC                | SALAN CO.   |             |
| "     | 1002            | • 0                 | 00            | CUT             | () (100<br>(0.000) | COGNAC    | 6                 | ,        | -       | .0             | -                   | RANCID       | and the second | ~~~            | BLEDATLY<br>SWEET |              | -            | -<br>    | - Ca                     | *           | . 100       |
| ··· [ | ALL A           | 9.0                 | D             | All services    | 1000               | CITRUS .  | ,                 | ,        | -       | )              | ,                   | 1. Co        | -              |                | ۲                 | Winte        |              | -        | - Ca                     | 쑳           |             |
| -     | nilly.          | 100                 | 00            | (CTAL)          | ₹¢≥                | ATTRACTS  | e ar              | ,        | 9       | MLK            | ,                   | -            | -              | ~~~            |                   |              |              | -<br>-   | -                        | ⚠           |             |
|       | AT FUEL         | 100                 | 00            | - SERVICE       | ,                  | 1000      | (a)               | ,        | ATURA   | ,              | ,                   | R.           | -              |                |                   |              |              | -        | 1                        | R           |             |
|       |                 | ,                   | ō.            | -SCHOL          | ,                  | terr      | annin             | ,        | This A  |                | ,                   | waxy         | <u>A</u> .     | <u>A</u>       |                   | 2            |              |          | 1                        |             |             |
|       | T               | ANALY .             | 10            | -               | ,                  | Tak 1     | ,                 | ,        | 7.0     | ,              | ,                   |              |                | <u>A</u>       |                   | ,            | A            | -        |                          | <u>Q</u>    | 10          |
|       | All Hand Street | LINIDER,<br>HOEAD N | N             | 0               | ,                  | countinus | *CASTO            | ,        |         | natr           | ,                   |              | 7400           |                |                   | ,            |              | and a    |                          | A           | -           |
| : 1   |                 | ROLE                | -             | PLEASANT        | ,                  | 1         |                   | ,        | ,       | ,              | ,                   | 15           | ,              |                |                   | ,            | A            | -        |                          | Q           | 1           |
| - 1   | 10000           |                     | N             | •               |                    | 1001      |                   |          | cide    | -              |                     | BORGANESS .  |                | 1              |                   |              |              |          |                          | 385         | No. 1       |
| - N   | 0000            |                     | $\mathcal{O}$ |                 | '                  | (PRESH)   |                   | ,        | Sumo.   | GELERY         |                     | (Name)       |                | And a second   |                   |              | GENOXOUS     | 000.4    |                          |             | 100         |