

Solubility Equilibria in Aqueous Systems
$\mathrm{K}_{s p}$ (Equilibria of Slightly Soluble Salts, Ionic
Compounds)
Factors that Affect Solubility
(Common Ion Effect, Acid-Base Chemistry)

Applications of Ionic Equilibria to Chemical Analysis

Equilibria of Slightly Soluble Ionic
 Compounds

When a solution becomes saturated and a precipitate forms, a cloudiness appears, which is the insoluble solute. Small amounts of ionized solute remain in solution. A representation of the equilibrium relative to the concentrations of the ions is referred to as the:
"Solubility Product" or the "Solubility-Product Constant":

$$
K_{\mathrm{sp}}
$$

Solubility-Product Constant, $K_{s p}$

- Consider

$$
\begin{aligned}
\mathrm{BaSO}_{4}(s) & \rightleftharpoons \mathrm{Ba}^{2+}(a q)+\mathrm{SO}_{4}{ }^{2-}(a q) \\
K_{s p} & =\left[\mathrm{Ba}^{2+}\right]\left[\mathrm{SO}_{4}^{2-}\right]
\end{aligned}
$$

($\mathrm{BaSO}_{4(\mathrm{~s})}$ is ignored because it is a pure solid so its concentration is constant, i.e., a heterogeneous equilibrium)

Writing Solubility Product Expressions for Slightly Soluble Ionic Compounds

Problem: Write the solubility product expression for :
(a) silver bromide;
(b) strontium phosphate
(c) aluminum carbonate
(d) nickel(III) sulfide.(The sulfide ion acts as a base and dissociates water to produce SH^{-}and OH^{-}.)

Approach: Write the equation for a saturated solution, then write the expression for the solubility product.

$K_{\text {sp }}$ of Some Ionic Compounds-Part 2

Solubility Calculations and Ksp

Determining $K_{\text {sp }}$ from Solubility

Problem: Lead chromate is an insoluble compound that at one time was used as the pigment in the yellow stripes on highways. It's solubility is $5.8 \times 10^{-6} \mathrm{~g} / 100 \mathrm{~mL}$ water. What is the $K_{\text {sp }}$?

Approach: Write the chemical equation for the dissolution of the compound to see the number of ions formed, then write the ion-product expression.

Approach: Write the chemical equation for the dissolution of the compound to see the number of ions formed, then write the ion-product expression. Solve for $\left[\mathrm{Pb}^{2+}\right]$ which equals the concentration of PbCrO_{4} present in solution.

Determining $K_{s p}$ from Solubility

Determining Solubility from $K_{s p}$

Problem: Lead chromate used to be used as the pigment for the yellow lines on roads, and is a very insoluble compound. Calculate the solubility of PbCrO_{4} in water if the $K_{\text {sp }}$ is equal to 2.3×10^{-13}.

Calcium phosphate $\left(\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}\right.$ is only slightly soluble. In fact, it is common ingredient in phosphate rock and is a major source of phosphate fertilizer. If the molar solubility is 2×10^{-7}, what is the value of the $K_{\text {sp }}$?
A. 3×10^{-34}
B. 2×10^{-10}
C. 3×10^{-32}
D. None of the above.

QUESTION \#K. 2

Lead (II) iodide is used in some camera batteries. PbI_{2} has a $K_{\text {sp }}$ of 1.4×10^{-8}. What is the molar solubility of this compound?
A. $1.9 \times 10^{-3} \mathrm{M}$
B. $2.4 \times 10^{-3} \mathrm{M}$
C. $1.5 \times 10^{-3} \mathrm{M}$
D. $8.4 \times 10^{-5} \mathrm{M}$

Question: Relative Solubilities
Is PbCl_{2} more soluble, less soluble or equal to the solubility of PbCrO_{4} ?

Factors That Affect Solubility:

The Common Ion Effect

- The solubility of a partially soluble salt is decreased when a common ion is added.
- Consider the equilibrium established when acetic acid, $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$, is added to water.
- At equilibrium H^{+}and $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}$are constantly moving into and out of solution, but the concentrations of ions is constant and equal.
- If a common ion is added, e.g. $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ - from $\mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ (which is a strong electrolyte) then $\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}\right]$increases and the system is no longer at equilibrium.
So, $\left[\mathrm{H}^{+}\right]$must decrease.
PbCrO_{4} solubility in water is $\mathbf{4 . 8} \times \mathbf{1 0}^{-\mathbf{7}} \boldsymbol{M}$
Is $\mathrm{PbCl}_{2}>,<$, or $=$ to it?
PbCl_{2} has a $K_{s p}$ of $1.6 \times \mathbf{1 0}^{-5}$
A) $>$
B) $<$
C) $=$
D) ?

Common-Ion Effect

- Solubility is decreased when a common ion is added. Therefore the equilibrium shifts to the left.
- This is an application of Le Châtelier's principle, for eg.:

$$
\mathrm{CaF}_{2}(\mathrm{~s}) \rightleftharpoons \mathrm{Ca}^{2+}(\mathrm{aq})+2 \mathrm{~F}^{-}(\mathrm{aq})
$$

- as F^{-}(from NaF , say) is added, the equilibrium shifts away from the increase.
- Therefore, $\mathrm{CaF}_{2}(s)$ is formed and precipitation occurs.
- As NaF is added to the system, the solubility of CaF_{2} decreases and more precipitate forms.
- What will happen if a large excess of NaF is added?

Calculating the Effect of adding a

 Common Ion on SolubilityProblem: What is the solubility of silver chromate in 0.0600 M silver nitrate solution? $K_{\mathrm{sp}}=2.6 \times 10^{-12}$.

Plan: Write the chemical equation(s) and the solubility-product expression for $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$. Qualitatively predict what effect the addition of silver ion will have on the solubility of $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$.

Calculating the Effect of a Common Ion on Solubility

$\mathrm{Ag}_{2} \mathrm{CrO}_{4(\mathrm{~s})} \longrightarrow 2 \mathrm{Ag}^{+}{ }_{(\mathrm{aq})}+\mathrm{CrO}_{4}{ }^{2-}{ }_{(\mathrm{aq})}$				
$K_{\text {sp }}=\left[\mathrm{Ag}^{+}\right]^{2}\left[\mathrm{CrO}_{4}{ }^{2-}\right]$				
Concentration (M)	$\mathrm{Ag}_{2} \mathrm{CrO}_{4(\mathrm{~s})}$	$\rightleftarrows \mathbf{2} \mathbf{A g}^{+}{ }_{(a q)}$	+	$\mathrm{CrO}_{4}{ }^{2-}{ }_{\text {(aq) }}$
Initial	---------	0.0600		0
Change	---------	+2x		+x
Equilibrium	---------	$0.0600+2 \mathrm{x}$		x

Assuming that $K_{\text {sp }}$ is small, $0.0600 M+2 \mathrm{x}=0.600 M$

$$
K_{\text {sp }}=2.6 \times 10^{-12}=(0.0600)^{2}(\mathrm{x}) \quad \mathrm{x}=7.22 \times 10^{-10} \mathrm{M}
$$

Therefore, the solubility of silver chromate is $\mathbf{7 . 2 2} \times 10^{-\mathbf{1 0}} \mathrm{M}$

Effect of pH on Solubility

Factors That Affect Solubility:

Acidity / pH

- Again, Le Châtelier's principle applies, for eg.:

$$
\mathrm{CaF}_{2}(s) \rightleftharpoons \mathrm{Ca}^{2+}(a q)+2 \mathrm{~F}^{-}(a q)
$$

\star If the F^{-}is removed, then the equilibrium shifts towards the decrease (the right) and CaF_{2} dissolves.
$\star \mathrm{F}^{-}$, a weak base, can be removed by adding a strong acid:

$$
\mathrm{F}^{-}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq}) \rightleftharpoons \mathrm{HF}(\mathrm{aq})
$$

* As pH decreases, $\left[\mathrm{H}^{+}\right]$increases and solubility increases since fluoride ion is removed as HF.
- The effect of pH on solubility is dramatic.

Solubility and $p H$

QUESTION

Predict what will happen when the pH of a saturated $\mathrm{Mg}(\mathrm{OH})_{2}$ solution is increased to 12.00 . For a saturated $\mathrm{Mg}(\mathrm{OH})_{2}$ solution, the $\mathrm{pH}=11.03$.
(A) More $\mathbf{M g}(\mathbf{O H})_{2}$ will dissolve.
(B) Some $\mathrm{Mg}(\mathrm{OH})_{2}$ will precipitate out.
(C) A $\mathbf{p H}$ change has no effect on the solubility of $\mathrm{Mg}(\mathrm{OH})_{2}$.
(D) There is insufficient information to make a prediction.

Predicting the Effect on Solubility of Adding

 Strong AcidProblem: Write balanced equations to explain whether addition of $\mathrm{H}_{3} \mathrm{O}^{+}$from a strong acid affects the solubility of:
(a) Iron (II) cyanide
(b) Potassium bromide
(c) Aluminum hydroxide

Plan: Write the balanced dissolution equation and note the anion. Anions of weak acids react with $\mathrm{H}_{3} \mathrm{O}^{+}$and shift the equilibrium position toward more dissolution. Strong acid anions do not react, so added acid has no effect.

Testing for the Presence of a Carbonate Solubility, pH and Carbonic Acid

Predicting the Effect on Solubility of Adding Strong Acid

Solutions:

(a) $\mathrm{Fe}(\mathrm{CN})_{2(\mathrm{~s})} \rightleftarrows \mathrm{Fe}^{2+}{ }_{(\mathrm{aq})}+2 \mathrm{CN}^{-}{ }_{\text {(a) }}$ Increases solubility: CN^{-}ion is a weak base. It reacts with water to form the weak acid HCN, so it would be removed from the solubility expression.
(b) $\mathrm{KBr}_{(\mathrm{s})} \rightleftarrows \mathrm{K}^{+}{ }_{(\mathrm{aq})}+\mathrm{Br}^{-}{ }_{(\mathrm{aq})} \quad$ No effect:
Br^{-}is the anion of a strong acid, and K^{+}is the cation of a strong base.
(c) $\mathrm{Al}(\mathrm{OH})_{3(\mathrm{~s})} \rightleftarrows \mathrm{Al}^{3+}{ }_{(\mathrm{aq})}+3 \mathrm{OH}_{(\mathrm{aq})}^{-} \quad$ Increases solubility: OH^{-}reacts with the added acid to produce water in a simple acid-base reaction.

QUESTION \#K. 4

The solubility of AgCl in water is \qquad the solubility of AgCl in strong acid at the same temperature.
A) greater than
B) less than
C) about the same as
D) cannot be determined

The Chemistry of Limestone Formation

Gaseous CO_{2} is in equilibrium with aqueous CO_{2} in natural waters:

$$
\mathrm{CO}_{2(\mathrm{~g})} \stackrel{\mathrm{H}_{2} \mathrm{O}(\mathrm{l})}{\rightleftarrows} \mathrm{CO}_{2(\mathrm{aq})}
$$

The concentration of CO_{2} is proportional to the partial pressure of $\mathrm{CO}_{2(\mathrm{~g})}$ in contact with the water (Henry's Law; section 13.3):

The Chemistry of Limestone Formation

Gaseous $\mathrm{CO}_{2} \rightleftarrows$ aqueous CO_{2} continued:

The reaction of CO_{2} with water produces $\mathrm{H}_{3} \mathrm{O}^{+}$:

$$
\mathrm{CO}_{2(\mathrm{aq})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightleftarrows \mathrm{H}_{3} \mathrm{O}_{(\mathrm{aq})}^{+}+\mathrm{HCO}_{3_{(\mathrm{aq})}^{-}}
$$

Thus, the presence of $\mathrm{CO}_{2(\mathrm{aq})}$ forms $\mathrm{H}_{3} \mathrm{O}^{+}$, which increases the solubility of CaCO_{3} :

$$
\mathrm{CaCO}_{3(\mathrm{~s})}+\mathrm{CO}_{2(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightleftarrows \mathrm{Ca}^{2+}{ }_{(\mathrm{aq})}+2 \mathrm{HCO}_{3_{(\mathrm{aq})}^{-}}
$$

In what complex carbon based system is this a significant factor?

Predicting the Formation of a Precipitate

Problem: Will a precipitate form when 0.100 L of a solution containing 0.55 M barium nitrate is added to 200.00 mL of a 0.100 M solution of sodium chromate?

Plan: We first see if the solutions will yield soluble ions, then we calculate the concentrations, adding the two volumes together to get the total volume of the solution, then we calculate the product constant $\left(Q_{\text {sp }}\right)$, and compare it to the solubility product constant to see if a precipitate will form.

Predicting the Formation of a Precipitate:

$Q_{s p}$ vs. $K_{s p}$

The solubility product constant, K_{sp}, can be compared to Q_{sp} to understand the characteristics of a solution with respect to forming a precipitate.

- $Q_{\mathrm{sp}}=K_{\mathrm{sp}}$: When a solution becomes saturated, no more solute will dissolve, and the solution is called "saturated." There will be no changes that will occur.
- $Q_{\text {sp }}>K_{\text {sp }}$: Precipitates will form until the solution becomes saturated.
- $Q_{\mathrm{sp}}<K_{\mathrm{sp}}$: Solution is unsaturated, and no precipitate will form.

Predicting the Formation of a Precipitate

Solution: Both $\mathrm{Na}_{2} \mathrm{CrO}_{4}$ and $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$ are soluble, so we will have $\mathrm{Na}^{+}, \mathrm{CrO}_{4}{ }^{2-}, \mathrm{Ba}^{2+}$ and $\mathrm{NO}_{3}{ }^{-}$ions present in 0.300 L of solution. We change partners, look up solubilities, and we find that BaCrO_{4} would be insoluble, so we calculate it's ionproduct constant and compare it to the solubility product constant of 2.1×10^{-10}.

For $\mathrm{Ba}^{2+}:\left[0.100 \mathrm{~L} \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}\right][0.55 \mathrm{M}]=0.055 \mathrm{~mol} \mathrm{Ba}^{2+}$

$$
\left[\mathrm{Ba}^{2+}\right]=\frac{0.055 \mathrm{~mol} \mathrm{Ba}^{2+}}{0.300 \mathrm{~L}}=0.183{\mathrm{M} \mathrm{in} \mathrm{Ba}^{2+}}^{2+}
$$

Predicting the Formation of a Precipitate
Solution continued
For $\mathrm{CrO}_{4}{ }^{2-}: \quad\left[0.100 \mathrm{Ma}_{2} \mathrm{CrO}_{4}\right][0.200 \mathrm{~L}]=0.0200 \mathrm{~mol} \mathrm{CrO}_{4}{ }^{2-}$
$\left[\mathrm{CrO}_{4}{ }^{2-}\right]=\frac{0.0200 \mathrm{~mol} \mathrm{CrO}_{4}{ }^{2-}}{0.300 \text { liters }}=0.667 \mathrm{M}$ in $\mathrm{CrO}_{4}{ }^{2-}$
$Q_{\mathrm{sp}}=\left[\mathrm{Ba}^{2+}\right]\left[\mathrm{CrO}_{4}{ }^{2-}\right]=\left(0.183 \mathrm{M} \mathrm{Ba}^{2+}\right)\left(0.667 \mathrm{M} \mathrm{CrO}_{4}{ }^{2-}\right)=0.121$
Since $K_{\mathrm{sp}}=2.1 \times 10^{-10}$ and $Q_{\mathrm{sp}}=0.121, \quad Q_{\mathrm{sp}} \gg K_{\mathrm{sp}}$ and a precipitate will form.

QUESTION \#K. 4

Will a precipitate of BaSO_{4} form when 10.0 mL of 0.0010 M barium nitrate are mixed with 20.0 mL of 0.000020 M of sodium sulfate? The $K_{\text {sp }}$ of barium sulfate is 1.5×10^{-9}. Prove your answer by reporting the calculated value of Q.
A. Yes; $Q=2.0 \times 10^{-8}$
B. Yes; $Q=4.4 \times 10^{-9}$
C. No; $Q=7.0 \times 10^{-10}$
D. No; $Q=3.0 \times 10^{-17}$

Formation of Complex Ions

Formation of Complex Ions

- Consider the addition of ammonia to AgCl (white precipitate):

$$
\begin{gathered}
\mathrm{AgCl}(s) \rightleftharpoons \mathrm{Ag}^{+}(a q)+\mathrm{Cl}^{-}(\mathrm{aq}) \\
\mathrm{Ag}^{+}(\mathrm{aq})+2 \mathrm{NH}_{3}(\mathrm{aq}) \stackrel{\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}(\mathrm{aq})}{ }
\end{gathered}
$$

- The overall reaction is
$\mathrm{AgCl}(s)+2 \mathrm{NH}_{3}(a q) \rightleftharpoons \mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}(a q)+\mathrm{Cl}^{-}(a q)$
- Effectively, the $\mathrm{Ag}^{+}(a q)$ has been removed from solution.
- By Le Châtelier's principle, the forward reaction (the dissolving of AgCl) is favored.

Note the values, particularly the order of magnitude (exponent).		
Formation Constants for Some Metal Complex lons in Water at $25^{\circ} \mathrm{C}$		
Complex Ion	K_{f}	Equilibrium Equation
$\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}{ }^{+}$	1.7×10^{7}	$\mathrm{Ag}^{+}(a q)+2 \mathrm{NH}_{3}(a q) \rightleftharpoons \mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}{ }^{+}(a q)$
$\mathrm{Ag}(\mathrm{CN})_{2}{ }^{-}$	1×10^{21}	$\mathrm{Ag}^{+}(a q)+2 \mathrm{CN}^{-}(a q) \rightleftharpoons \mathrm{Ag}(\mathrm{CN})_{2}{ }^{-}(a q)$
$\mathrm{Ag}\left(\mathrm{S}_{2} \mathrm{O}_{3}\right)_{2}{ }^{3-}$	2.9×10^{13}	$\mathrm{Ag}^{+}(a q)+2 \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-}(a q) \rightleftharpoons \mathrm{Ag}\left(\mathrm{S}_{2} \mathrm{O}_{3}\right)_{2}{ }^{3-}(a q)$
$\mathrm{CdBr}_{4}{ }^{2-}$	5×10^{3}	$\mathrm{Cd}^{2+}(a q)+4 \mathrm{Br}^{-}(a q) \rightleftharpoons \mathrm{CdBr}_{4}{ }^{2-}(a q)$
$\mathrm{Cr}(\mathrm{OH})_{4}{ }^{-}$	8×10^{29}	$\mathrm{Cr}^{3+}(a q)+4 \mathrm{OH}^{-} \rightleftharpoons \mathrm{Cr}(\mathrm{OH})_{4}{ }^{-}(a q)$
$\mathrm{Co}(\mathrm{SCN})_{4}{ }^{2-}$	1×10^{3}	$\mathrm{Co}^{2+}(a q)+4 \mathrm{SCN}^{-}(a q) \rightleftharpoons \mathrm{Co}(\mathrm{SCN})_{4}{ }^{2-}(a q)$
$\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}{ }^{2+}$	5×10^{12}	$\mathrm{Cu}^{2+}(a q)+4 \mathrm{NH}_{3}(a q) \rightleftharpoons \mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}{ }^{2+}(a q)$
$\mathrm{Cu}(\mathrm{CN})_{4}{ }^{2-}$	1×10^{25}	$\mathrm{Cu}^{2+}(a q)+4 \mathrm{CN}^{-}(a q) \rightleftharpoons \mathrm{Cu}(\mathrm{CN})_{4}{ }^{2-}(a q)$
$\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}{ }^{2+}$	1.2×10^{9}	$\mathrm{Ni}^{2+}(a q)+6 \mathrm{NH}_{3}(a q) \rightleftharpoons \mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}{ }^{2+}(a q)$
$\mathrm{Fe}(\mathrm{CN})_{6}{ }^{4-}$	1×10^{35}	$\mathrm{Fe}^{2+}(a q)+6 \mathrm{CN}^{-}(a q) \rightleftharpoons \mathrm{Fe}(\mathrm{CN})_{6}{ }^{4-}(a q)$
$\mathrm{Fe}(\mathrm{CN})_{6}{ }^{3-}$	1×10^{42}	$\mathrm{Fe}^{3+}(a q)+6 \mathrm{CN}^{-}(a q) \rightleftharpoons \mathrm{Fe}(\mathrm{CN})_{6}{ }^{3-}(a q)$

Table Continued

Formation Constants $\left(K_{f}\right)$ of

 Some Complex Ions at $25^{\circ} \mathrm{C}$| Complex Ion | $\boldsymbol{K}_{\mathbf{f}}$ |
| :---: | :---: |
| | |
| $\mathrm{Hg}(\mathrm{CN})_{4}{ }^{2-}$ | 9.3×10^{38} |
| $\mathrm{Ni}(\mathrm{OH})_{4}{ }^{2-}$ | 2×10^{28} |
| $\mathrm{~Pb}(\mathrm{OH})_{3}{ }^{-}$ | 8×10^{13} |
| $\mathrm{Sn}(\mathrm{OH})_{3}{ }^{-}$ | 3×10^{25} |
| $\mathrm{Zn}(\mathrm{CN})_{4}{ }^{2-}$ | 4.2×10^{19} |
| $\mathrm{Zn}(\mathrm{NH})_{4}{ }^{2+}$ | 7.8×10^{8} |
| $\mathrm{Zn}(\mathrm{OH})_{4}{ }^{2-}$ | 3×10^{15} |
| | |
| | |
| | |

Calculating the Concentrations of Complex Ions

Problem: A chemist converts $\mathrm{Ag}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}{ }^{+}$to the more stable form $\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}{ }^{+}$by mixing 50.0 L of 0.0020 M $\mathrm{Ag}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}{ }^{+}$and 25.0 L of $0.15 \mathrm{M} \mathrm{NH}_{3}$. What is the final $\left[\mathrm{Ag}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}{ }^{+}\right] ? K_{\mathrm{f}} \mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}{ }^{+}=1.7 \times 10^{7}$.

Plan: Write the equation and the K_{f} expression, set up the table for the calculation, then substitute into K_{f} and solve.

Calculating the Concentrations of Complex Ions

Solution:

$$
\begin{gathered}
\mathrm{Ag}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}{ }^{+}{ }_{(\mathrm{aq})}+2 \mathrm{NH}_{3(\mathrm{aq})} \rightleftharpoons \mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}{ }^{+}(\mathrm{aq}) \\
K_{\mathrm{f})}=\frac{\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}{ }^{+}\right]}{\left[\mathrm{Hg}\left(\mathrm{H}_{2} \mathrm{O} \mathrm{O}_{2}{ }^{+}\right]\left[\mathrm{NH}_{3}\right]^{2}\right.}=1.7 \times 10^{7}
\end{gathered}
$$

Finding the initial concentrations:

$$
\begin{aligned}
& {\left[\mathrm{Ag}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}{ }^{+}\right]_{\text {init }}=\frac{50.0 \mathrm{~L} \times 0.0020 \mathrm{M}}{50.0 \mathrm{~L}+25.0 \mathrm{~L}}=1.3 \times 10^{-3} \mathrm{M}} \\
& {\left[\mathrm{NH}_{3}\right]_{\text {init }}=\frac{25.0 \mathrm{~L} \times 0.15 \mathrm{M}}{50.0 \mathrm{~L}+25.0 \mathrm{~L}}=5.0 \times 10^{-2} \mathrm{M}}
\end{aligned}
$$

Calculating the Concentrations of Complex Ions
Assume that all of the $\mathrm{Ag}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}{ }^{+}$is converted $\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}{ }^{+}$; set up the table with $x=\left[\mathrm{Ag}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}{ }^{+}\right]$at equilibrium.
Ammonia reacted $=\left[\mathrm{NH}_{3}\right]_{\text {reacted }}=2\left(1.3 \times 10^{-3} \mathrm{M}\right)=2.6 \times 10^{-3} \mathrm{M}$
Concentration (M) $\quad \mathbf{A g}\left(\mathbf{H}_{2} \mathrm{O}\right)_{2}{ }^{+}{ }_{(\mathrm{aq})} \quad \mathbf{2} \mathrm{NH}_{\mathbf{3}(\mathrm{aq})} \rightarrow \mathbf{A g}\left(\mathbf{N H}_{3}\right)_{2}{ }^{+} \mathbf{2 ~ H}_{2} \mathbf{O}_{(\mathrm{aq}}$
$\begin{array}{lcccc}\text { Initial } & 1.3 \times 10^{-3} & 5.0 \times 10^{-2} & 0 & --- \\ \text { Change } & \sim\left(-1.3 \times 10^{-3}\right) & \sim\left(-2.6 \times 10^{-3}\right) & \sim\left(+1.3 \times 10^{-3}\right) & ---\end{array}$
Equilibrium $\quad \mathrm{x} \quad 4.7 \times 10^{-2} \quad 1.3 \times 10^{-3} \quad---$

$$
K_{\mathrm{f}}=\frac{\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}^{+}\right]}{\left[\mathrm{Ag}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}^{+}\right]\left[\mathrm{NH}_{3}\right]^{2}}=\frac{1.3 \times 10^{-3}}{\mathrm{x}\left(4.7 \times 10^{-2}\right)^{2}}=1.7 \times 10^{7}
$$

$$
\mathrm{x}=3.46 \times 10^{-8} M=\left[\mathrm{Ag}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}^{+}\right]
$$

QUESTION \#K. 5

As you have seen one method that can increase the solubility of some salts is to form a soluble complex ion. CuS has a $K_{\text {sp }}$ of 8.5×10^{-45}. The reaction

$$
\mathrm{Cu}^{2+}(a q)+4 \mathrm{NH}_{3}(a q) \rightarrow \mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}{ }^{2+}
$$

has an equilibrium constant of approximately 5.6×10^{11}. What would be the approximate molar solubility of CuS in a 1.0 M solution of NH_{3} ?
A. $\sim 6.9 \times 10^{-17} \mathrm{M}$
B. $\sim 9.2 \times 10^{-23} \mathrm{M}$
C. $\sim 4.8 \times 10^{-33} \mathrm{M}$
D. The molar solubility would be very, very small, and it is not significant whether the solubility is either A, B, or C .

Factors That Affect Solubility:

Amphoterism

- Since hydrated metal ions act as weak acids, the amphoterism is discontinuous (See rxn. \#3): $\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{3+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightleftharpoons \mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}(\mathrm{OH})^{2+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
$\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}(\mathrm{OH})^{2+}(a q)+\mathrm{OH}^{-}(a q) \rightleftharpoons \mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{OH})_{2}{ }^{+}(a q)+\mathrm{H}_{2} \mathrm{O}(\mathrm{D})$
$\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{OH})^{+}(a q)+\mathrm{OH}^{-}(\mathrm{aq}) \rightleftharpoons \mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}(\mathrm{OH})_{3}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
$\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}(\mathrm{OH})_{3}(s)+\mathrm{OH}^{-}(a q) \rightleftharpoons \mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(\mathrm{OH})_{4}^{-}(a q)+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$

$$
\mathrm{Al}\left(\mathrm{OH}_{3}\right)(s)+\mathrm{OH}^{-}(a q) \rightleftharpoons \mathrm{Al}(\mathrm{OH})_{4}^{-}(\mathrm{aq})
$$

- However, hydrated metal ions act as weak acids.

QUESTION \#K. 6

Given:
$\mathrm{Cu}(\mathrm{OH})_{2}(\mathrm{~s}) \rightleftharpoons \mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq})$
$K_{\text {sp }}=1.6 \times 10^{-19}$
$\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}{ }^{2+} \rightleftharpoons \mathrm{Cu}^{2+}(\mathrm{aq})+4 \mathrm{NH}_{3}(\mathrm{aq})$
$K=1.0 \times 10^{-13}$

What is the value of the equilibrium constant for the reaction:
$\mathrm{Cu}(\mathrm{OH})_{2}(\mathrm{~s})+4 \mathrm{NH}_{3}(\mathrm{aq}) \rightleftharpoons \mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}{ }^{2+}(\mathrm{aq})+$
$2 \mathrm{OH}^{-}(\mathrm{aq})$
A) 1.6×10^{-19}
B) 6.2×10^{31}
C) 1.6×10^{-6}
D) 1.6×10^{-32}

A Sequence of Reactions Affecting

 Silver Ion Solubilities

Provide complete net ionic equations (NIEs) for each of the eight silver metal ion reactions in the video (i.e. for each addition) and the respective K_{sp} or K_{f} value that relates to that particular NIE.
http://chemconnections.org/general/movies/Precip-Equil-I.mov

Precipitation and Separation of Ions

$\mathrm{BaSO}_{4}(s) \rightleftharpoons \mathrm{Ba}^{2+}(\mathrm{aq})+\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})$

- At any instant in time, $\mathrm{Q}=\left[\mathrm{Ba}^{2+}\right]\left[\mathrm{SO}_{4}{ }^{2-}\right]$. \star If $Q>K_{s p}$, precipitation occurs until $Q=K_{s p}$.
$*$ If $Q=K_{s p}$, equilibrium exists.
\star If $Q<K_{s p}$, solid dissolves until $Q=K_{s p}$.
- Based on solubilities, ions can be selectively removed from solutions.
- Consider a mixture of $\mathrm{Zn}^{2+}(a q)$ and $\mathrm{Cu}^{2+}(a q) . \mathrm{CuS}\left(K_{s p}=\right.$ 6×10^{-37}) is less soluble than $\mathrm{ZnS}\left(K_{s p}=2 \times 10^{-25}\right)$, CuS will be removed from solution before ZnS .

Precipitation and Separation of Ions

- As $\mathrm{H}_{2} \mathrm{~S}$ is added to the green solution, black CuS forms in a colorless solution of $\mathrm{Zn}^{2+}(a q)$.
- When more $\mathrm{H}_{2} \mathrm{~S}$ is added, a second precipitate of white ZnS forms.
Selective Precipitation of Ions
- Ions can be separated from each other based on their salt solubilities.
- Example: if HCl is added to a solution containing Ag^{+} and Cu^{2+}, the silver precipitates ($K_{s p}$ for AgCl is $1.8 \times$ 10^{-10}) while the Cu^{2+} remains in solution.
- Removal of one metal ion from a solution is called selective precipitation.

Separating Ions by Selective Precipitation

Problem: A solution consists of $0.10 \mathrm{M} \mathrm{AgNO}_{3}$ and $0.15 \mathrm{M} \mathrm{CuNO}_{3}$. Calculate the [I^{-}] that can be used to separate the metals as their iodides.
$K_{\text {sp }}$ of $\mathrm{AgI}=8.3 \times 10^{-17} ; K_{\text {sp }}$ of $\mathrm{CuI}=1.0 \times 10^{-12}$.
Plan: Since the two iodides have the same formula type (1:1), directly compare their $K_{\text {sp }}$ values. NOTE: CuI is about 100,000 times more soluble than AgI. Therefore, AgI precipitates first. Solve for $\left[\mathrm{I}^{-}\right]$, which is the concentration for a saturated solution of AgI.

Solution: Writing chemical equations and ion-product expressions:

$$
\begin{array}{ll}
\mathrm{AgI}_{(\mathrm{s})} \stackrel{\mathrm{H}_{2} \mathrm{O}}{\rightleftarrows} \mathrm{Ag}^{+}{ }_{\text {(aq) }}+\mathrm{I}^{-}{ }_{(\mathrm{aq})} & K_{\text {sp }}=\left[\mathrm{Ag}^{+}\right]\left[\mathrm{I}^{-}\right] \\
\mathrm{CuI}_{(\mathrm{s})} \stackrel{\mathrm{H}_{2} \mathrm{O}}{\rightleftarrows} \mathrm{Cu}^{+}{ }_{(\mathrm{aq})}+\mathrm{I}_{(\mathrm{aq})}^{-} & K_{\text {sp }}=\left[\mathrm{Cu}^{+}\right]\left[\mathrm{I}^{-}\right]
\end{array}
$$

Calculating the quantity of iodide needed to give a saturated solution of CuI:

$$
\left[\mathrm{I}^{-}\right]=\frac{K_{\mathrm{sp}}}{\left[\mathrm{Cu}^{+}\right]}=\frac{1.0 \times 10^{-12}}{0.10 \mathrm{M}}=1.0 \times 10^{-11} \mathrm{M}
$$

Selective Precipitation

The concentration of iodide ion that will give a saturated solution of copper(I) iodide is $1.0 \times 10^{-11} \mathrm{M}$. This concentration will not precipitate the copper(I) ion. It will remove most of the silver ion. Calculating the quantity of silver ion remaining in solution we get:

$$
\left[\mathrm{Ag}^{+}\right]=\frac{K_{\mathrm{sp}}}{[\mathrm{I}-]}=\frac{8.3 \times 10^{-17}}{1.0 \times 10^{-11}}=8.3 \times 10^{-6} \mathrm{M}
$$

Since the initial silver ion was 0.10 M , most of it has been removed, and essentially none of the copper(I) was removed, so the separation was quite complete. If the iodide was added as sodium iodide, you would have to add only a few nanograms of NaI to remove nearly all of the silver from solution:

$$
1.0 \times 10^{-11} \mathrm{~mol} \mathrm{I}^{-} \times \frac{1 \mathrm{molNaI}^{-}}{\mathrm{mol} \mathrm{I}^{-}} \times \frac{149.9 \mathrm{~g} \mathrm{NaI}}{\mathrm{~mol} \mathrm{NaI}}=1.50 \mathrm{ng} \mathrm{NaI}
$$

> Selective Precipitation Qualitative Analysis: Separating \& Identifying Metal Ions

Separation into Ion Groups

Ion Group 1: Insoluble chlorides $\quad \mathrm{Ag}^{+}, \mathrm{Hg}_{2}{ }^{2+}, \mathrm{Pb}^{2+}$
Ion Group 2: Acid-insoluble sulfides
$\mathrm{Cu}^{2+}, \mathrm{Cd}^{2+}, \mathrm{Hg}^{2+}, \mathrm{As}^{3+}, \mathrm{Sb}^{3+}, \mathrm{Bi}^{3+}, \mathrm{Sn}^{2+}, \mathrm{Sn}^{4+}, \mathrm{Pb}^{2+}$
Ion Group 3: Base-insoluble sulfides and hydroxides $\mathrm{Zn}^{2+}, \mathrm{Mn}^{2+}, \mathrm{Ni}^{2+}, \mathrm{Fe}^{2+}, \mathrm{Co}^{2+}$ as sulfides, and $\mathrm{Al}^{3+}, \mathrm{Cr}^{3+}$ as hydroxides

Ion Group 4: Insoluble phosphates

$$
\mathrm{Mg}^{2+}, \mathrm{Ca}^{2+}, \mathrm{Ba}^{2+}
$$

Ion Group 5: Alkali metal and ammonium ions

$$
\mathrm{Na}^{+}, \mathrm{K}^{+}, \mathrm{NH}_{4}^{+}
$$

