Names:				Section_	
Chem 226/ Fall 2008					Dr. Rusay
	 1 5			(D DE 1)	

Optical Rotation / Polarimetry (PART 1) Refer to Class Notes and the Web page listed below

Work in pairs. There will be no need for a formal report and records in your lab notebook for PARTS 1 and 2 of this experiment, only PART 3. Complete this form and the questions in PART 2 for the on-line *jmol* structures, and turn-in before beginning PART 3 (Enantiomeric Resolution of (+/-) Ibuprofen). Keep a copy for your records.

PART I: Optical rotation, optical purity, enantiomeric excess

http://chemconnections.org/organic/chem226/226assign-08.html#polarimetry

Olfactory discrimination of enantiomers is possible as you have seen with carvone. In PART I of this experiment you will determine the optical purity of a sample of carvone using a polarimeter and relate your experimental results to the enantiomer's smell, physical properties and absolute configuration. Each partner should independently determine α for the unknown carvone solution A that has been prepared for you. Unknown Bhas it's data provided. Take the average of the two and then calculate $[\alpha]$ for each of the carvone unknowns. Show your calculations below the Table.

Experimental Data:

Cell path length =	Temperature =	$\lambda = 589 \ nm$	solvent =	$\alpha_{\text{solvent}} =$
100. mm	25 °C	(sodium D)	ethanol	$0^{\rm o}$

	Mass	Volume	α_1	α_2	α_{avg}	[α]	Smell: (mint,
	(mg)	(mL)				(calc.)	caraway or
							cannot tell)
Unknown A	4,002	25.00					
Unknown B	3,945	25.00	+7.0°	+7.1°	+7.05°		

Calculations:

$$\left[\alpha\right]_{A} = \left[\alpha\right]_{B} =$$

Consult the chemical literature and complete the following table of physical / optical data for the respective carvone enantiomers. (To determine the absolute configurations (R- or S-) refer to the structure below of d-carvone.)

	boiling point	density	[α]	Abs. Config.
d-carvone				
l-carvone				

Using the literature and experimental data complete the following questions for the unknowns A and B. Show your calculations for optical purity and enamtiomeric excess.

	optical purity	% R-	% S-	Enantiomeric Excess: (%) indicate d- or l-	Smell
Unknown A					
Unknown B					

		Parity			<i>d</i> - or <i>l</i> -		
	Unknown						
	A Unknown						
	В						
Calcula							
Optical P	Purity (Enantion	neric Exces	ss) A				
Optical P	Purity B (Enant	iomeric Ex	cess B)				
A) A == th	a abaamyad am	alla aamaiat	ant!tha		Driefly diamas		
A) Are u	ie observed sin	ens consist	eni willi yo	ur resuits?	Briefly discuss.		
D) Tha I	D for moos :::		, manantad -	a 1640 m = =	lra 1) Ia aameere	aamaidamad tarii-9 () Way14
b) The L	101 1aceiiii	Lai vone is	s reported a	s 1040 ilig/	kg . 1) is cal volle	considered toxic?	∠) would

you expect this value to be the same for each enantiomer? Briefly explain your answer.