

The Shapes of Cycloalkanes: Planar or Nonplanar?

Adolf von Baeyer (19th century)

•Assumed cycloalkanes were planar polygons.

-Believed distortion of bond angles from 109.5 $^\circ$ gives angle strain to some cycloalkanes.

• One for two is great in baseball.

Types of Strain

- Torsional strain strain that results from eclipsed bonds (measure of the dihedral angle)
- Van der Waals strain or (*Steric strain*) strain that results from atoms being too close together.
- Angle strain results from distortion of bond angles from normal values, for a tetrahedron 109.5°

Heats of C	combus	tion in			
Cycloalkanes					
•Cycloalkane	kJ/mol	Per CH ₂			
 Cyclopropane 	2,091	697			
 Cyclobutane 	2,721	681			
 Cyclopentane 	3,291	658			
 Cyclohexane 	3,920	653			
 Cycloheptane 	4,599	657			
 Cyclooctane 	5,267	658			
 Cyclononane 	5,933	659			
 Cyclodecane 	6,587	659			

Cyclic Alkanes - Cyclobutane

- Cyclobutane is 27 kJ/mol less stable than cyclohexane per CH_2 group. It is also strained and reactive:
- 1. Angle strain results from bond angles of 88°, although it is not as severe as the 60° angles in cyclopropane.
- 2. Slight torsional strain results because adjacent C–H bonds are neither fully eclipsed nor fully staggered.

Cyclic Alkanes - Cyclopentane

- Cyclopentane is only 5 kJ/mol less stable than cyclohexane per CH₂ group:
 - 1. Angles are close to the optimal value.
 - Identify the minimal but significant torsional strain in the structure. It is very helpful to use a handheld model.
 H H H

Boat conformation is less stable than the chair

• Eclipsed bonds bonds gives torsional strain to boat.

Conformational Inversion

•chair-chair interconversion (ring-flipping)
•rapid process (activation energy = 45 kJ/mol)
•all axial bonds become equatorial and vice versa

•substituent is more stable when equatorial

 The larger the substituent on a cyclohexane ring, the more the equatorial substituted conformer will be favored

Substituent	Axial $\stackrel{K_{eq}}{\longleftarrow}$ Equatorial	Substituent	Axial $\stackrel{K_{eq}}{\longrightarrow}$ Equatorial
н	1	CN	1.4
CH ₃	18	F	1.5
CH ₃ CH ₂	21	Cl	2.4
CH3 CH3CH	35	Br	2.2
CH ₃		I	2.2
CH ₃ C CH ₃ C CH ₃	4800	НО	5.4

The larger the substituent on a cyclohexane ring, the more the equatorial substituted conformer will be favored

SUBSTITUENT	STERIC HINDRANCE FROM 1,3-DIAXIAL INTERACTIONS (KJ/MOL)	AXIAL-EQUATORIAL RATIO (AT EQUILIBRIUM)	
—CI	2.0	70 : 30	
—ОН	4.2	83 : 17	
—CH₃	7.6	95 : 5	
–CH₂CH ₃	8.0	96 : 4	
-CH(CH ₃) ₂	9.2	97 : 3	
	22.8	9999 : 1	

 K_{eq} = [equatorial conformer]/[axial conformer]

Cyclohexane Stereochemistry Cis -Trans Isomers			
Position	cis	trans	
1,2	e,a or a,e	e,e or a,a	
1,3	e,e or a,a	a,e or e,a	
1,4	e,a or a,e	e,e or a,a	

