8.11
Substitution and Elimination as Competing Reactions

Alkyl halides can react with Lewis bases by nucleophilic substitution and/or elimination.

\[
\begin{align*}
\text{alkyl halide} + \text{Lewis base} &\rightarrow \text{substitution product} \\
\text{alkyl halide} + \text{alkoxide ion} &\rightarrow \text{elimination product}
\end{align*}
\]

Two Reaction Types

How can we tell which reaction pathway is followed for a particular alkyl halide?

\[
\begin{align*}
\text{β-elimination} &\rightarrow \text{elimination product} \\
\text{nucleophilic substitution} &\rightarrow \text{substitution product}
\end{align*}
\]

Elimination versus Substitution

A systematic approach is to choose as a reference point the reaction followed by a typical alkyl halide (secondary) with a typical Lewis base (an alkoxide ion).

The major reaction of a secondary alkyl halide with an alkoxide ion is elimination by the E2 mechanism.

Example

CH\(_2\)CH(CH\(_3\))\(_2\) + Br\(_2\) → CH\(_3\)CH=CH\(_2\) + CH\(_3\)CH\(_2\)Br

Na\(_2\)O\(_2\)CH\(_2\)\(_2\) ethanol, 55°C

(13%) (87%)

Figure 8.8

E2
Which one of the following alkyl halides would be expected to give the highest ratio of substitution to elimination on treatment with sodium ethoxide in ethanol (50°C)?

A) 1-bromopentane

B) 2-bromopentane

C) 3-bromopentane

D) 2-bromo-3-methylbutane

When is Substitution Favored?

Given that the major reaction of a secondary alkyl halide with an alkoxide ion is elimination by the E2 mechanism, we can expect the proportion of substitution to increase with:

1) decreased crowding at the carbon that bears the leaving group

Uncrowded Alkyl Halides

Decreased crowding at carbon that bears the leaving group increases substitution relative to elimination.

Primary alkyl halide

\[\text{CH}_3\text{CH}_2\text{CH}_2\text{Br} \]

Na\text{CH}_3\text{CH}_3

Ethanol, 55°C

\[\text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_3 + \text{CH}_3\text{CH=CH}_2 \]

(91%) (9%)

But a Crowded Alkoxide Base Can Favor Elimination Even with a Primary Alkyl Halide

Primary alkyl halide + bulky base

\[\text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_2\text{Br} \]

K\text{O}[\text{CH}_2\text{CH}_3]

Tert-butyl alcohol, 40°C

\[\text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_2\text{O}[\text{CH}_2\text{CH}_3]_3 + \text{CH}_3\text{CH}(\text{CH}_3)_2\text{CH=CH}_2 \]

(13%) (87%)

When is Substitution Favored?

Given that the major reaction of a secondary alkyl halide with an alkoxide ion is elimination by the E2 mechanism, we can expect the proportion of substitution to increase with:

1) decreased crowding at the carbon that bears the leaving group

2) decreased basicity of the nucleophile
Question

Which one of the following statements is true?
A) CH₂CH₂S⁻ is both a stronger base and more nucleophilic than CH₃CH₂O⁻
B) CH₂CH₂S⁻ is a stronger base but less nucleophilic than CH₃CH₂O⁻
C) CH₂CH₂S⁻ is a weaker base but is more nucleophilic than CH₃CH₂O⁻
D) CH₂CH₂S⁻ is both a weaker base and less nucleophilic than CH₃CH₂O⁻

Weakly Basic Nucleophile

Weakly basic nucleophile increases substitution relative to elimination

Secondary alkyl halide + weakly basic nucleophile

- **CH₂CH₂CH₂CH₃**
- **Cl⁻**
- **KCN**
- **DMSO**
- **pKₐ (HCN) = 9.1**
- **CH₂CH₂CH₂CH₃CN**
- **(70%)**

Question

Which one of the following compounds gives the highest substitution-to-elimination ratio (most substitution least elimination) on reaction with 2-bromobutane?
A) NaOCH₃
B) NaNH₂
C) NaN₃
D) NaC≡CH

Tertiary Alkyl Halides

Tertiary alkyl halides are so sterically hindered that elimination is the major reaction with all anionic nucleophiles. Only in solvolysis reactions does substitution predominate over elimination with tertiary alkyl halides.

Question

Which one of the following statements is true concerning substitution and elimination in tert-butyl bromide?
A) the mechanism generally believed to be available to (CH₃)₃Br are S₄N₁ and E₁
B) the mechanism generally believed to be available to (CH₃)₃Br are S₄N₁, S₂, and E₁
C) the mechanism generally believed to be available to (CH₃)₃Br are S₄N₁, S₂, and E₂
D) the mechanism generally believed to be available to (CH₃)₃Br are S₄N₁, E₁ and E₂
Example

\[(\text{CH}_3)_2\text{CCH}_2\text{CH}_3 + \text{CH}_3\text{Br} \rightarrow \text{CH}_3\text{CH}==\text{CHCH}_2\text{CH}_3 + \text{CH}_3\text{C}==\text{CCH}_2\text{CH}_3\]

Question

Reactions proceeding through this mechanism give a racemic mixture:
A) \(S_n1\)
B) \(S_n2\)
C) E1
D) E2

Question 9

Methyl bromide reacts with sodium ethoxide in ethanol by this mechanism:
A) \(S_n1\)
B) \(S_n2\)
C) E1
D) E2

Question

3-bromo-3-methylpentane reacts with sodium ethoxide in ethanol by this mechanism:
A) \(S_n1\)
B) \(S_n2\)
C) E1
D) E2