Chapter 2
Molecular Representations

Review of Concepts
Fill in the blanks below. To verify that your answers are correct, look in your textbook at the end of Chapter 2. Each of the sentences below appears verbatim in the section entitled Review of Concepts and Vocabulary.

- In **bond-line structures**, _______ atoms and most ________ atoms are not drawn.
- A ______________ is a characteristic group of atoms/bonds that show a predictable behavior.
- When a carbon atom bears either a positive charge or a negative charge, it will have __________, rather than four, bonds.
- In bond-line structures, a **wedge** represents a group coming ______ the page, while a **dash** represents a group ________ the page.
- ___________ arrows are tools for drawing resonance structures.
- When drawing curved arrows for resonance structures, avoid breaking a _______ bond and never exceed ___________ for second-row elements.
- There are three rules for identifying significant resonance structures:
 1. Minimize ____________.
 2. Electronegative atoms can bear a positive charge, but only if they possess an ________ of electrons.
 3. Avoid drawing a resonance structure in which two carbon atoms bear ____________ charges.
- A ____________ lone pair participates in resonance and is said to occupy a ___ orbital.
- A ____________ lone pair does not participate in resonance.

Review of Skills
Fill in the blanks and empty boxes below. To verify that your answers are correct, look in your textbook at the end of Chapter 2. The answers appear in the section entitled **SkillBuilder Review**.

SkillBuilder 2.1 Converting Between Different Drawing Styles

DRAW THE LEWIS STRUCTURE OF THE FOLLOWING COMPOUND

(CH₃)₂COCH₃
SkillBuilder 2.2 Reading Bond-Line Structures

Circle all carbon atoms in the compound below

Draw all hydrogen atoms in the compound below

SkillBuilder 2.3 Drawing Bond-Line Structures

Draw a bond-line drawing of the following compound:

SkillBuilder 2.4 Identifying Lone Pairs on Oxygen Atoms

An oxygen atom with a negative charge will have ____ lone pair(s)
An oxygen atom with no formal charge will have ____ lone pair(s)
An oxygen atom with a positive charge will have ____ lone pair(s)

SkillBuilder 2.5 Identifying Lone Pairs on Nitrogen Atoms

A nitrogen atom with a negative charge will have ____ lone pair(s)
A nitrogen atom with no formal charge will have ____ lone pair(s)
A nitrogen atom with a positive charge will have ____ lone pair(s)

SkillBuilder 2.6 Identifying Valid Resonance Arrows

Rule 1: The tail of a curved arrow cannot be placed on a __________
Rule 2: The head of a curved arrow cannot result in __________

SkillBuilder 2.7 Assigning Formal Charges in Resonance Structures

Indicate the location of the negative charge in the second resonance structure below

SkillBuilder 2.8 Drawing Significant Resonance Structures
IDENTIFY WHICH RESONANCE STRUCTURES BELOW ARE SIGNIFICANT AND WHICH ARE INSIGNIFICANT

SkillBuilder 2.9 Identifying Localized and Delocalized Lone Pairs

IDENTIFY WHETHER THE LONE PAIR ON THE NITROGEN ATOM BELOW IS DELocalIZED
IDENTIFY THE HYBRIDIZATION STATE OF THE NITROGEN ATOM

Solutions

2.1.

a)

b)

c)

d)

e)

f)

g)

h)

i)

j)

k)

l)
2.2 \((\text{CH}_3)_3\text{COCH}_3\) and \((\text{CH}_3)_2\text{CHÖCH}_2\text{CH}_3\)

2.3 Six

2.4 \(\text{H}_2\text{C}=\text{CHCH}_3\)

2.5.

\begin{align*}
\text{a) } & \quad \begin{array}{c}
\text{H} \\
\end{array} \\
\text{b) } & \quad \begin{array}{c}
\text{H} \\
\end{array} \\
\text{c) } & \quad \begin{array}{c}
\text{H} \\
\end{array} \\
\text{d) } & \quad \begin{array}{c}
\text{H} \\
\end{array} \\
\text{e) } & \quad \begin{array}{c}
\text{H} \\
\end{array} \\
\text{f) } & \quad \begin{array}{c}
\text{H} \\
\end{array} \\
\text{g) } & \quad \begin{array}{c}
\text{H} \\
\end{array} \\
\text{h) } & \quad \begin{array}{c}
\text{H} \\
\end{array} \\
\text{i) } & \quad \begin{array}{c}
\text{H} \\
\end{array} \\
\text{j) } & \quad \begin{array}{c}
\text{H} \\
\end{array} \\
\text{k) } & \quad \begin{array}{c}
\text{H} \\
\end{array} \\
\text{l) } & \quad \begin{array}{c}
\text{H} \\
\end{array}
\end{align*}

2.6

a) decrease \((7 \rightarrow 6)\) \hspace{1cm} b) no change \((8 \rightarrow 8)\)

\hspace{1cm} c) no change \((8 \rightarrow 8)\) \hspace{1cm} d) increase \((5 \rightarrow 7)\)

2.7

a) increase \((12 \rightarrow 14)\) \hspace{1cm} b) decrease \((8 \rightarrow 6)\)

2.8.

\begin{align*}
\text{a) } & \quad \begin{array}{c}
\text{H} \\
\end{array} \\
\text{b) } & \quad \begin{array}{c}
\text{H} \\
\end{array} \\
\text{c) } & \quad \begin{array}{c}
\text{H} \\
\end{array} \\
\text{d) } & \quad \begin{array}{c}
\text{H} \\
\end{array}
\end{align*}
2.9.

2.10.

2.11.

2.12.

a) No charge b) No charge c) No charge
2.13.

a) ![Image of structure 1]

b) ![Image of structure 2]

c) No charge
d) ![Image of structure 3]

2.14.

a) ![Image of structure 4]

b) ![Image of structure 5]

c) ![Image of structure 6]

d) ![Image of structure 7]
e) ![Image of structure 8]

f) ![Image of structure 9]
g) ![Image of structure 10]

h) ![Image of structure 11]
i) ![Image of structure 12]
j) ![Image of structure 13]

2.15. There are no hydrogen atoms attached to the central carbon atom. The carbon atom has four valence electrons. Two valence electrons are being used to form bonds, and the remaining two electrons are a lone pair. This carbon atom is using the appropriate number of valence electrons.

2.16.

a) ![Image of structure 14]

b) ![Image of structure 15]

c) ![Image of structure 16]
d) no lone pairs

e) ![Image of structure 17]

f) ![Image of structure 18]

g) no lone pairs
h) ![Image of structure 19]

2.17.

a) ![Image of structure 20]

b) ![Image of structure 21]

c) ![Image of structure 22]

d) ![Image of structure 23]
e) ![Image of structure 24]

f) ![Image of structure 25]

2.18.

a) one b) zero c) one d) five
2.19 Five lone pairs:

\[\text{R} - \underset{}{\text{O}} - \text{O} \overset{\text{NH}_3}{\text{O}} \]

2.20

a)

\[\text{Troglitazone} \quad \text{Rosiglitazone} \quad \text{Pioglitazone} \]

b) Yes, it contains the likely pharmacophore highlighted above.

2.21

a) Violates second rule by giving a fifth bond to a nitrogen atom.
b) Does not violate either rule.
c) Violates second rule by giving five bonds to a carbon atom.
d) Violates second rule by giving three bonds and two lone pairs to an oxygen atom.
e) Violates second rule by giving five bonds to a carbon atom.
f) Violates second rule by giving five bonds to a carbon atom.
g) Violates second rule by giving five bonds to a carbon atom, and violates second rule by breaking a single bond.
h) Violates second rule by giving five bonds to a carbon atom, and violates second rule by breaking a single bond.
i) Does not violate either rule.
j) Does not violate either rule.
k) Violates second rule by giving five bonds to a carbon atom.
l) Violates second rule by giving five bonds to a carbon atom.

2.22

\[\text{Structure} \]

2.23

a) \[\text{Structure} \]

b) \[\text{Structure} \]
CHAPTER 2

2.26.

a)

b)

24
2.27.

2.28.

2.29.

2.30.
2.31.

\[
\begin{align*}
\text{HO-} & \quad \text{OH} & \quad \text{HO-} & \quad \text{OH} \\
\text{H}_2\text{N} & \quad \text{HO-} & \quad \text{OH} & \quad \text{H}_2\text{N} \\
\end{align*}
\]

2.32.

a)

\[
\begin{align*}
\text{O} & \quad \text{O} & \quad \text{O} \\
\end{align*}
\]

b)

\[
\begin{align*}
\text{O} & \quad \text{O} & \quad \text{O} \\
\end{align*}
\]

c)

\[
\begin{align*}
\text{O} & \quad \text{O} & \quad \text{O} \\
\end{align*}
\]

d)

\[
\begin{align*}
\text{O} & \quad \text{O} & \quad \text{O} \\
\end{align*}
\]

e)

\[
\begin{align*}
\text{O} & \quad \text{O} & \quad \text{O} \\
\end{align*}
\]

f)

\[
\begin{align*}
\text{O} & \quad \text{O} & \quad \text{O} \\
\end{align*}
\]
2.33.

\[
\begin{align*}
g) & \quad \text{g) } \\
h) & \quad \text{h) } \\
i) & \quad \text{i) } \\
j) & \quad \text{j) }
\end{align*}
\]
e)

f)

g)

h)

i)

j)

k)

l)
2.34.

![Diagram](image1)

2.35.

![Diagram](image2)

2.36.

a) delocalized sp\(^2\) hybridized trigonal planar

b) localized sp\(^2\) hybridized trigonal planar

c) delocalized sp\(^2\) hybridized trigonal planar

d) localized sp\(^2\) hybridized bent

e) delocalized sp\(^2\) hybridized trigonal planar
f)

One of these lone pairs is delocalized. The oxygen atom is sp² hybridized and has bent geometry.

2.37. Both lone pairs are localized and, therefore, both are expected to be reactive.

2.38.

2.39.

2.40.

2.41.

2.42.

Vitamin A

Vitamin C
2.43. Twelve (each oxygen atom has two lone pairs)

2.44.

\[
\begin{align*}
\text{H}_2\text{O}^+ & \quad \text{N}^+ \\
\text{O}^- & \quad \text{H}_3\text{O}^+ \\
\text{N}^- & \quad \text{H}_2\text{O}^+
\end{align*}
\]

2.45.

\[
\begin{align*}
\text{C}_4\text{H}_10 & \quad \text{C}_6\text{H}_{14} \\
\text{C}_8\text{H}_{18} & \quad \text{C}_{12}\text{H}_{26}
\end{align*}
\]

In each of the compounds above, the number of hydrogen atoms is equal to two times the number of carbon atoms, plus two.

2.46.

\[\text{C}_4\text{H}_8 \quad \text{C}_7\text{H}_{14} \quad \text{C}_7\text{H}_{14} \quad \text{C}_{12}\text{H}_{24}\]

In each of the compounds above, the number of hydrogen atoms is two times the number of carbon atoms.
c) In each of the compounds above, the number of hydrogen atoms is two times the number carbon atoms, minus two.

d) A compound with molecular formula C$_2$H$_{48}$ must have either one double bond or one ring. It cannot have a triple bond, but it may have a double bond.

e) 2.47.
 a) an sp^2 hybridized atomic orbital
 b) a p orbital
 c) a p orbital

2.48.
 a)
 b)
 c)

2.49.
 a) (CH$_3$)$_3$CCH$_2$CH$_2$CH(CH$_3$)$_2$
 b) (CH$_3$)$_2$CHCH$_2$CH$_2$OH
 c) CH$_3$CH$_2$CH=CH(C$_2$H$_5$)$_2$
2.50.
 a) C₉H₂₀
 b) C₆H₁₄O
 c) C₈H₁₆

2.51.
 (d) is not a valid resonance structure, because it violates the octet rule. The nitrogen atom has five bonds in this drawing, which is not possible, because the nitrogen atom only has four orbitals with which it can form bonds.

2.52. 15 carbon atoms and 18 hydrogen atoms:

2.53.
 a) ⋅O⁻ b) ⋅N≡N⁺ c) ⋅≡O⁺ d) ⋅N⁺

2.54.

2.55.

a) ⋅O⁻

b) ⋅⁺

c) ⋅⁺

d) ⋅⁺
2.56. These structures do not differ in their connectivity of atoms. They differ only in the placement of electrons, and are therefore resonance structures.

2.57.
 a) constitutional isomers
 b) same compound
 c) different compounds that are not isomeric
 d) constitutional isomers

2.58.

a)

b)

c)

d)

e)

f)
2.59. The nitronium ion does not have any significant resonance structures because any attempts to draw a resonance structure will either 1) exceed an octet for the nitrogen atom or 2) generate a nitrogen atom with less than an octet of electrons, or 3) generate a structure with three charges. The first of these would not be a valid resonance structure, and the latter two would not give significant resonance structures.

2.60.

2.61. Both nitrogen atoms are sp^2 hybridized and trigonal planar, because in each case, the lone pair participates in resonance.

2.62.
2.63.

a) The molecular formula is C₃H₆N₂O₂
b) There are two sp^3 hybridized carbon atoms
c) There is one sp^2 hybridized carbon atom
d) There are no sp hybridized carbon atoms
e) There are six lone pairs (each nitrogen atom has one lone pair and each oxygen atom has two lone pairs)
f) The lone pairs on the oxygen of the C=O bond are localized. One of the lone pairs on the other oxygen atom is delocalized. The lone pair on the nitrogen atom is delocalized.
g) All sp^2 hybridized carbon atoms are trigonal planar. All sp^3 hybridized carbon atoms are tetrahedral. The nitrogen atom is trigonal planar. The oxygen atom of the C=O bond does not have a geometry because it is connected to only one other atom, and the other oxygen atom has bent geometry.

2.64.

a) The molecular formula is C₁₆H₂₁NO₂
b) There are nine sp^3 hybridized carbon atoms
c) There is seven sp^2 hybridized carbon atoms
d) There are no sp hybridized carbon atoms
e) There are five lone pairs (the nitrogen atom has one lone pair and each oxygen atom has two lone pairs)
f) The lone pairs on the oxygen of the C=O bond are localized. One of the lone pairs on the other oxygen atom is delocalized. The lone pair on the nitrogen atom is delocalized.
g) All sp^2 hybridized carbon atoms are trigonal planar. All sp^3 hybridized carbon atoms are tetrahedral. The nitrogen atom is trigonal planar. The oxygen atom of the C=O bond does not have a geometry because it is connected to only one other atom, and the other oxygen atom has bent geometry.
2.65.

a) Compound B has one additional resonance structure that Compound A lacks, because of the relative positions of the two groups on the aromatic ring. Specifically, Compound B has a resonance structure in which one oxygen atom has a negative charge and the other oxygen atom has a positive charge:

```
  O
|   |
\ H-\-\-\-\H
  H

  O
|   |
\ H-\-\-\-\H
  H
```

Compound A does not have a resonance structure in which one oxygen atom has a negative charge and the other oxygen atom has a positive charge. That is, Compound A has fewer resonance structures than Compound B. Accordingly, Compound B has greater resonance stabilization.

b) Compound C is expected to have resonance stabilization similar to that of Compound B, because Compound C also has a resonance structure in which one oxygen atom has a negative charge and the other oxygen atom has a positive charge:

```
  O
|   |
\ H-\-\-\-\H
  H

  O
|   |
\ H-\-\-\-\H
  H
```

```
  O
|   |
\ H-\-\-\-\H
  H
```

Compound C
2.67.
The single bond mentioned in this problem has some double bond character, as a result of resonance:

Each of the carbon atoms of this single bond uses an atomic p orbital to form a conduit (as described in Section 2.7):

Rotation about this single bond will destroy the overlap of the p orbitals, thereby destroying the resonance stabilization. This single bond therefore exhibits a large barrier to rotation.