
Name:	Section:	

Chem 226 / Dr. Rusay Worksheet (#8): Reactions of Alkenes

1. Provide a line drawing for the principal product in each of the following reactions. Begin at the top for the reaction of the alkene with HBr(aq) and then proceed clockwise. Circle any chiral carbon atoms in the products and note if each reaction is non-selective (ns), regio-selective (rs), stereo-selective (ss) or stereo-specific (ssp).

Worksheet (#8/Part 2): Reactions of Alkenes

Provide a line drawing for the principal product in each of the following reactions. Begin at the top for the reaction of the alkene with HBr(aq) and then proceed clockwise. Circle any chiral carbon atoms in the products and note if each reaction is non-selective (**ns**), regio-selective (**rs**), stereo-selective (**ss**) or stereo-specific (**ssp**).

Challenge Problem: M and N are isomers, C_4H_8 . M reacts with H_2 in the presence of a catalyst to give an alkane, C_4H_{10} . N also reacts with H_2 under the same conditions to give C_4H_{10} , which is different from the compound obtained for M. Reaction of M with O_3 followed by treatment with Z_n/H_3O^+ gives two products, C_4P_2O and C_3P_4O . N reacts under the same ozonolysis conditions to give one product, C_2P_4O . When N is heated with a few drops of P_2SO_4 , it is converted to a mixture of P_4O_4 , and P_4O_4 in which P_4O_4 predominates. P_4O_4 , the same product obtained from ozonolysis of P_4O_4 . Ozonolysis of P_4O_4 gives two products, P_4O_4 and P_4O_4 . This P_4O_4 compound from P_4 is not the same as the P_4O_4 compound from P_4O_4 . (Attach structures for compounds P_4O_4).