The following table summarizes the formal charge on a central atom, and the reactivity of several of the most important species in organic chemistry. | Species | Lewis
Structure | Valence
Electrons
"Owned" by
Central
Atom | Valence
Electron
Count of
Neutral
Central
Atom | Formal
Charge of
Central
Atom | Reactivity | |-----------------------------|--------------------|---|---|--|--| | neutral | -ç- | 4 | 4 | 0 | very low | | carbocation | | 3 | 4 | +1 | high: strong
electron pair
acceptor
(ACID) | | free radical | -ċ— | 4 | 4 | 0 | high: (due to
unpaired
electron) | | anion | | 5 | 4 | -1 | high: strong
electron pair
donor
(BASE) | | ammonia | | 5 | 5 | 0 | weak electron
pair donor;
weak electron
pair acceptor
(BASE) | | ammonium
ion
(cation) | N | 4 | 5 | +1 | strong electron
pair acceptor
(ACID) | | amide ion
(anion) |
—N—
 | 6 | 5 | -1 | high: strong
electron pair
donor
(BASE) | | Water (neutral) |
—o—
 | 6 | 6 | 0 | weak electron pair donor; weak electron pair acceptor (ACID or BASE) | |------------------------------------|-------------|---|---|----|--| | hydronium
ion
(cation) | o | 5 | 6 | +1 | strong electron
pair acceptor
(ACID) | | hydroxide
ion
(anion) | O : | 7 | 6 | -1 | strong electron
pair donor
(BASE) | | bonded
hydrogen
(neutral) | —н | 1 | 1 | 0 | low unless
activated by
neighboring
atom(s) | | hydride
(anion) | н -
Н | 2 | 1 | -1 | strong electron
pair donor
(BASE) | | proton
(cation) | H + | 0 | 1 | +1 | strong electron
pair acceptor
(ACID) | | hydrogen
atom (free
radical) | H | 1 | 1 | 0 | high: (due to
unpaired
electron) |