## WORKSHOP

## Alkyl Halides and Alcohols: Synthesis

1. Disconnect the alcohol shown below into three "Grignard-carbonyl" pairs that when combined would give the alcohol.

2. Show how to carry out the following synthetic transformations. You may use methanol and ethanol as reactants, any inorganic reagents, and any necessary solvents. If more than one synthetic step is required, show the product for each step.
a. cyclopentane $\longrightarrow$ deuteriocyclopentane $\left(\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{D}\right)$
b.

c. 1-chloropentane $\longrightarrow$ 1-heptanol
d. 2-methyl-1-propanol $\longrightarrow$ 3-methylbutanenitrile
e. cyclopentanone $\longrightarrow$ cyclopentyl bromide
f. cyclohexanol $\longrightarrow$ 1-methylcyclohexene $\longrightarrow$ trans-2-methylcyclohexanol
g. 1-propanol

h. isopropyl bromide $\longrightarrow\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCCH}_{2} \mathrm{CH}_{3}$ (only carbon source)
i.

3. Consider the following observations:
a.


Explain (give a reasonable mechanism) for this reaction
b. When an alcohol reacts with $\mathrm{SOCl}_{2} /$ pyridine, the following derivative is formed. If the reactant alcohol is $(S)$-1-deuterioethanol, the product is $(R)-1-$ deuterioethyl chloride. Clearly explain how the formation of this intermediate facilitates the conversion of the alcohol to the corresponding alkyl chloride.

c. The reaction of THF with concentrated HBr gives a new compound, $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OBr}$. This new compound shows a broad absorption in the IR at $3400 \mathrm{~cm}^{-1}$. When the new compound is treated with aqueous NaOH solution, THF is reformed. Propose a structure for $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OBr}$, and explain (give a mechanism) for the interconversion.
d. Compounds $\mathbf{A}$ and $\mathbf{B}$ both have a molecular formula of $\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{Br}$. When either is reacted with $\mathrm{Mg} / \mathrm{Et}_{2} \mathrm{O}$ followed by treatment with $\mathrm{H}_{2} \mathrm{O}$, toluene $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}\right)$ is obtained. When $\mathbf{A}$ is added to $\mathrm{AgNO}_{3} / \mathrm{EtOH}$, an immediate precipitate occurs. However, when $\mathbf{B}$ is added to $\mathrm{AgNO}_{3} / \mathrm{EtOH}$, even heating for extended periods of time yields no precipitate. Give structures for $\mathbf{A}$ and $\mathbf{B}$, and explain the reasoning behind your assignments.

## Observation

Deduction

