Sec. _____

Chem 227 / Dr. Rusay / Electrophilic Aromatic Substitution Reactions

Clearly indicate the chemically equivalent carbon atoms and the chemically equivalent hydrogen atoms for the starting compound including multiplicity of nmr signals and approximate chemical shifts.

CH3

Carbon:

Hydrogen:

The ¹H nmr spectra is of one of the two possible products formed in the reaction. The ¹³C nmr spectra is for the other. Draw the respective structures and assign the peaks to the structures. Identify which one is the sole product in the reaction.

Carbon 13	Explain how IR could be used to distinguish between the starting material and
18.2 q	products.
20.9 q	
27.0 q	
129.0 d	
129.2 d	
133.5 d	
134.6 s	
134.8 s	
138.0 s	
196.5 s	

The ¹H nmr spectra is of one of the two possible products formed in the reaction. The ¹³C nmr spectra is for the other. Draw the respective structures and assign the peaks to the structures. Identify which one is the sole product in the reaction.

The ¹H nmr spectra is of one of the two products formed in the reaction. The ¹³C nmr spectra is for the other. Draw the respective structures and assign the peaks to the structures.

Carbon 13	Explain how IR could be used to distinguish between the starting material and
17.6 q	products.
118.7 s	
122.6 d	
132.0 d	
139.8 s	
168.2 s	

Carbon:

E		1	1	1				1	1	
1										
		 	+	: {		- <u> </u>	-	1		
		1	1	1			1	1	1	
3		l.	1	1			1	1		
E			1	,						
	1	1	1	1			1	1	1	
										
1										
		I.	1	1			1	1		
E	,			1			1		r	
-			1	1				1		
4		للمعدينا								
=	1		1	1			1	1	1	
1			1							
E		i f	<u> </u>				<u></u>			
-			1	1			1	1		
4			+	 			 	 		
E		<u>ы</u>	1	1						
E			,					1		
10	9 8	i i	7 ε	5 ÷	5 4	i :	3 1	2 t	i c) i
C 1	Evoluin	aour ID	aguld ha	used to	distingu	ich hatu	ioon tha	atortina	matarial	and
Carbon $_{13}$	Explain	IOW IN		used to	uistingu	ISII Detw		starting	material	and
50.0 q	products	•								
124.8 d										
127.0d										
127.70										
129.3 d										
167.0 s										
131.4 s										
135 8 d										
133.0 u										
148.3 s										

QCH₃

Carbon:

Hydrogen:

¹³ C ppm	Explain how IR could be used to distinguish between the starting material and
55.9 (q)	products.
113.6 (d)	
125.1 (d)	
141.0 (s)	
163.8 (s)	