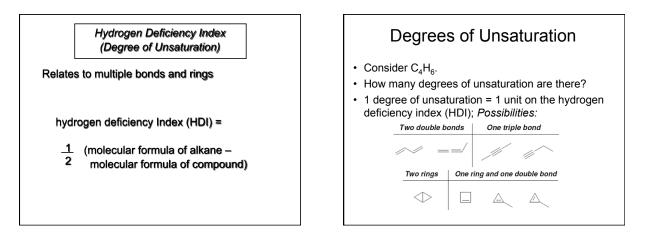
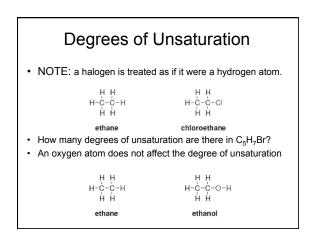


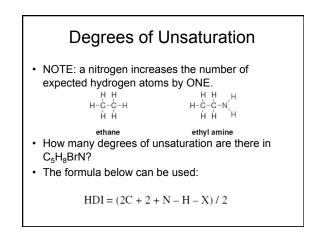
- Nominal molecular mass: the molecular mass to the nearest whole number
- Each *m/z* value is the nominal molecular mass of the fragment
- The peak with the highest *m/z* value usually represents the molecular ion (M)
- Peaks with smaller m/z values—called fragment ion peaks—represent positively charged fragments of the molecule

High Resolution Mass Spectrometry (MS)

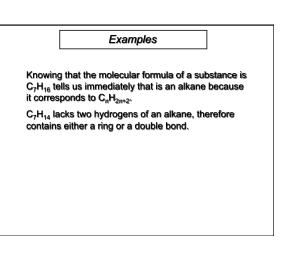

- High resolution MS allows m/z to be measured with up to 4 decimal places.
- Masses are generally not whole number integers: 1 proton = 1.0073 amu and 1 neutron = 1.0086 amu
- One ¹²C atom = exactly 12.0000 amu, because the amu scale is based on the mass of ¹²C.
- All atoms other than ¹²C will have a mass in amu that can be measured to four decimal places by a high-res MS instrument.

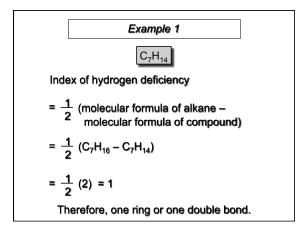


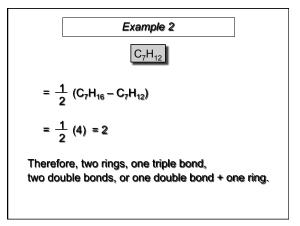


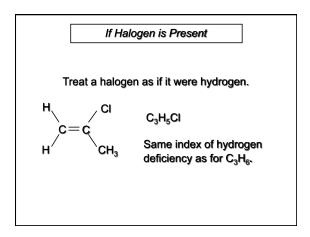

Degrees of Unsaturation

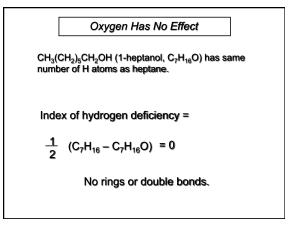
- Using high resolution MS a molecular formula of an organic compound can be determined.
- A molecular formula will suggest the possible number of double bonds, triple bonds and rings in the structure. Alkanes are *saturated*, having a maximum number of hydrogen atoms. C_nH_{2n+2}

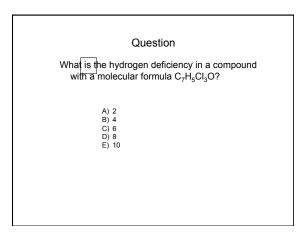


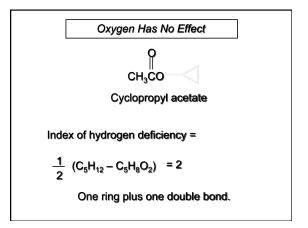


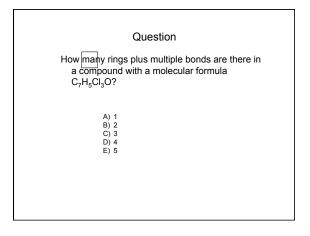





Qu	estion						
Calculate the degrees of unsaturation (HDI: hydrogen deficiency index) for each of the following.							
A. C ₂₀ H ₄₀							
B. C ₁₆ H ₂₄ O	A. A = 1; B = 4; C = 2; D = 2 B. A = 1; B = 5; C = 1; D = 2						
C. $C_8H_{10}Br_2Cl_4$	C. A = 2; B = 4; C = 1; D = 2 D. A = 2; B = 5; C = 2; D = 1 E. A = 2; B = 5; C = 1; D = 2						
D. $C_9H_{14}Br_3O_2N$	L. A - 2, D - 3, 0 - 1, D - 2						



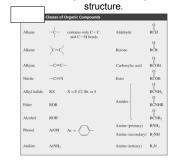




Rings versus Multiple Bonds

Index of hydrogen deficiency tells us the sum of rings plus multiple bonds.

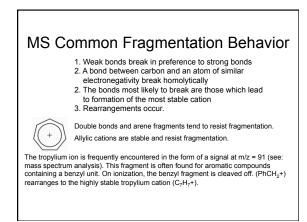
Catalytic hydrogenation tells us how many multiple bonds there are.


Question

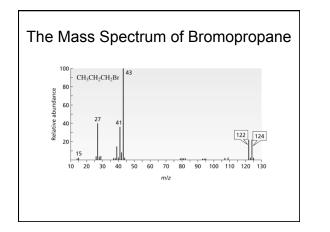
A compound with a molecular formula $C_7H_5Cl_3O$ is catalytically hydrogenated. It consumed 3 moles of hydrogen. How many rings and double bonds does the molecule respectively have?

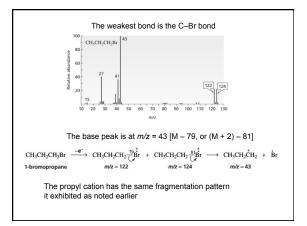
A) 3 rings; no double bonds
B) 3 rings; 1 double bond
C) 1 rings; 3 double bonds
D) no rings; 3 double bonds
E) None of the above

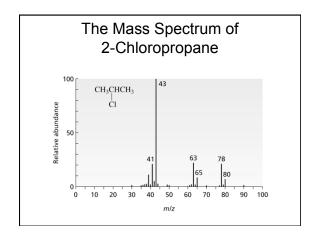
IR is used to determine functional groups.

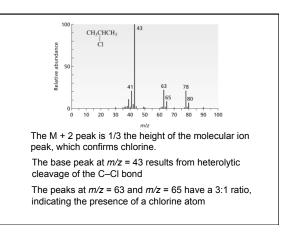

•A molecular formula plus IR data can produce a possible

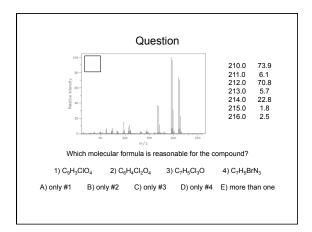
Question

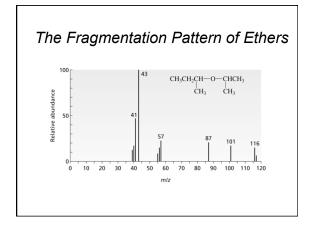

A molecule has a molecular ion m/z = 112.0888, intensity = 100%; M+1 = 8.075%; M+2 = 0.482%, and the following distinctive IR peaks:

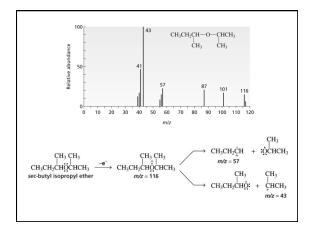

- A strong peak at 1687 cm⁻¹
- NO IR peaks above 3000 cm⁻¹
- Which of the compounds below best fits the data?
 - A. 3-heptyn-1-ol
 - B. trans-3-hepten-2-one
 - C. cyclohexanone
 - D. 2-octanone
 - E. 3-methyl-2-cyclohexen-1-ol

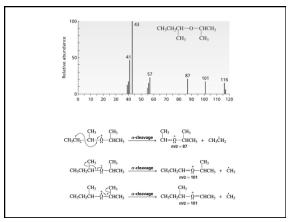


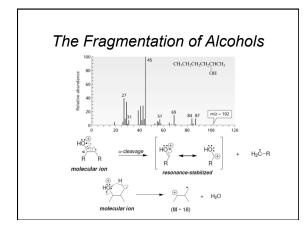

	Natur	al abundance	of some	elements [3]	
Isotop	e % nat. abundance	atomic mass	isotope	% nat. abundance	atomic mass
1Н	99.985	1.007825	¹² C	98.89	12 (definition)
² H	0.015	2.0140	13C	1.11	13.00335
¹⁶ O	99.76	15.99491	14N	99.64	14.00307
17O	0.04		15N	0.36	15.00011
¹⁸ O	0.2				
28Si	92.23	27.97693	³² S	95.0	31.97207
²⁹ Si	4.67	28.97649	33S	0.76	32.97146
³⁰ Si	3.10	29.97376	³⁴ S	4.22	33.96786
³⁶ CI	75.77	34.96885	⁷⁹ Br	50.69	78.9183
37CI	24.23		81Br	49.31	80.9163

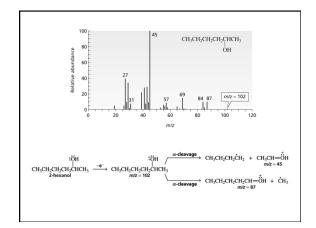

•			•
Halogen	% M + 2	% M + 4	% M + 6
Br	97.9		
Br ₂	195	95.5	
Br ₃	293	286	93.4
CI	32.6		
Cl ₂	65.3	10.6	
Cl ₃	97.8	31.9	3.47

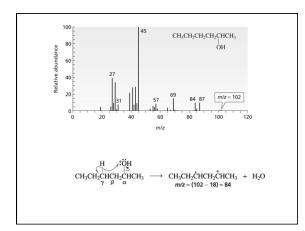


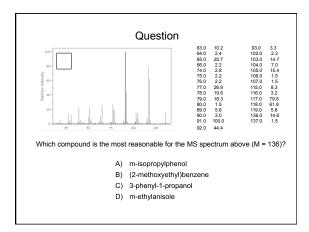


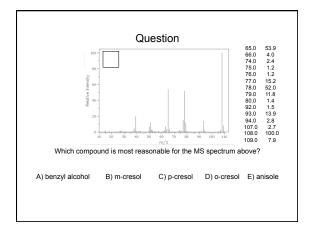


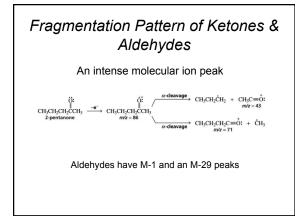


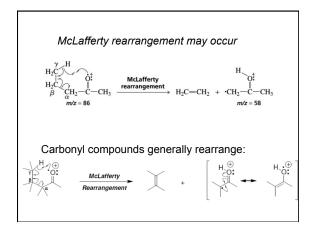


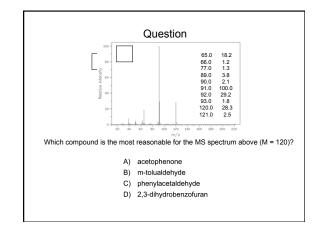


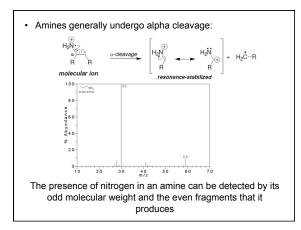


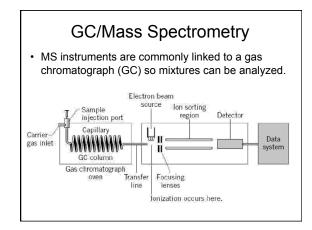


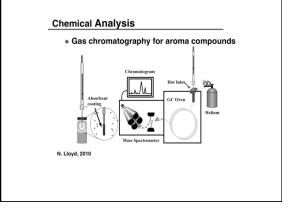


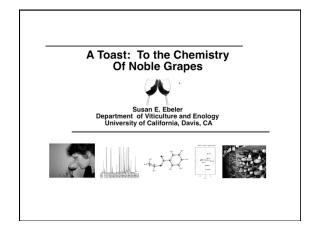


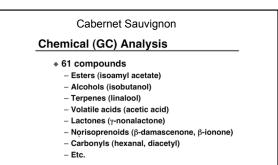




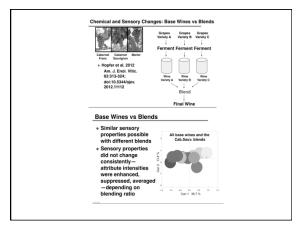








GC/MS Applications


- Many organic compounds have been identified using large libraries of data:
 - Pharmaceuticals: drug discovery and drug metabolism, reaction monitoring
 - Biotech: amino acid sequencing, analysis of macromolecules
 - Clinical: neonatal screening, hemoglobin analysis
 - Environmental: drug testing, water quality, food contamination testing
 - Geological: evaluating oil composition
 - Forensic: explosives detection
 - Viticulture / Enology: volatile molecules & sensory perceptions

0.3-	PC2 x-expl 13%, y-expl CS3	
	Multivariate statistical Benzyl alcoho	Vitispirane II CS10 Vitispirane I
	analysis – PLSR2 using UnScrambler®	Barnyard 4-Ethylphenol
.15	Trans-linalool oxide	4-Ethylguaiacol α-Cedrene Vegetal
	CS6 Overall	CS8 Titratable acidity ■Pepper . ρ-Cymene
	aroma	• γ-Nonalactone Wood Ethyl isovalerate
0 -	CS1• Farnesol	CS11 CS17 CS17 CS17 CS18 CS17 CS18 CS18 CS16 CS16 CS16 CS16 CS16 CS16 CS16 CS16
	CS5 · Isocugenol · β-Damascenone · 2-Ethylpheno	y-DodecalaCS21 hyl hexanoate
	Residual sugar Vanillin 2-Phenethyl acetate	Guard C513 Overall flavor Alcohol Limonent rans-oak lactone Isobutanoi Cis-linalool oxide Methionoto C510/Camphor, Eugenoi Octobergio C510/Camphor, Eugenoi
0.15	Hexyl acetate Free SO ₂ Furfural Linalool Total SO ₃ β-Citronellol Isoamyl acetat	CS12 CS22 Phenylacetaldehyde · Alcohol
	Berry · Acetoin · Diacetyl	No correlation to
	Butterscotch	vineyard location or the
0.3-		price of the wine PCI x-expl 25%, y-exp
1/1	-0.15	0.15 0.3

Studying Viticulture & Enology at UCDavis

- http://wineserver.ucdavis.edu
- B.S. in Viticulture and Enology
- M.S. in Viticulture and Enology
- PhD in Various Disciplines (Agricultural Chemistry, Food Science, Microbiology, Plant Biology, Horticulture, Genetics, Engineering, etc....)
- Certificate in Winemaking for Distance Learners http://extension.ucdavis.edu/unit/winemaking/certificate/ winemaking/
- University Extension 1- and 2-Day Shortcourses
 http://extension.ucdavis.edu/index.asp