¹³C NMR Spectrosopy: Interpretation & Prediction; Reactions

Names:	
Chem 227/ Dr. Rusay	

Consult the IR/MS data and your predicted functions from *Activity 1*. See *Activity 2* for ¹³C NMR spectra and weight percent/molar mass data: http://chemconnections.llnl.gov/organic/Chem227/227assign-06.html

Provide structures and NMR data supporting your respective structures.

Unknown's Structure and labeled carbon atoms	Provide chemical shifts (δ ppm), and respective splitting patterns: singlet (s), doublet (d), triplet (t), quartet (q) for each ^{13}C signal.
EXAMPLE: a b CH ₃ CH ₂ OH	$a \delta = 18.13 (q)$ $b \delta = 57.79 (t)$
UNKNOWN A	
UNKNOWN B	
UNKNOWN C	

1) Provide reagents for the following reduction:

Identify the carbons in the reactant that are equivalent, label them as a, b, c, etc.; complete the table with their respective estimated chemical shifts and splitting patterns: singlet (s), doublet (d), triplet (t) or quartet (q) that are determined from decoupling experiments. Repeat the process for the product.

	REACTANT	,		PRODUCT	
Carbon(s)	δ ppm	Splitting	Carbon(s)	δ ppm	Splitting

2) Provide reagents for the following oxidation:

Identify the carbons in the reactant that are equivalent, label them as a, b, etc.; complete the table with their respective estimated chemical shifts and splitting patterns: singlet (s), doublet (d), triplet (t) or quartet (q). Repeat the process with the product.

REACTANT			PRODUCT		
Carbon(s)	δ ppm	Splitting	Carbon(s)	δ ppm	Splitting

3) Provide appropriate reagent(s):

Identify the respective carbons in the reactant that have identical chemical shifts, label them as a, b, c, etc.; complete the table with their respective estimated chemical shifts and splitting patterns: singlet (s), doublet (d), triplet (t), quartet (q) or multiplet (m). Repeat for the product.

	REACTANT	•		PRODUCT	
Carbon(s)	δ ppm	Splitting	Carbon(s)	δ ppm	Splitting
				·	

4) A Chem 298 summer research student attempted to reduce 2-octanone with lithium aluminum hydride. The following 13 C NMR data was obtained.

14.10	(q)
23.45	(t)
25.88	(t)
29.48	(t)
31.98	(t)
39.49	(t)
68.03	(d)

Draw the structure of the expected product and explain whether the reduction was successful based on the ¹³C NMR data.

Structure:	Explanation:

etc.;	5) Run the ^{13}C NMRs of both partner's unknown, draw their respective structures below, identify the equivalent carbon atoms that have identical chemical shifts, label them as a , b , c , etc.; complete the table with their respective chemical shifts and splitting patterns from the spectra.						
	U	Inknown #:		Unknown#:			
	Carbon(s)	δ ppm	Splitting	Carbon(s)	δ ppm	Splitting	
,							
,							
,							
,							