${ }^{13}$ C NMR Spectrosopy: Interpretation \& Prediction; Reactions
Names:
Chem 227/ Dr. Rusay
Consult the IR/MS data and your predicted functions from Activity 1. See Activity 2 for ${ }^{13} C$ NMR spectra and weight percent/molar mass data : http://chemconnections.llnl.gov/organic/Chem227/227assign-06.html

Provide structures and NMR data supporting your respective structures.

Unknown's Structure and labeled carbon atoms	Provide chemical shifts (δ ppm), and respective splitting patterns: singlet (s), doublet (d), triplet (t), quartet (q) for each ${ }^{13} C$ signal.
EXAMPLE: $\stackrel{a}{\mathrm{C}_{3}} \stackrel{b}{\mathrm{C}} \mathrm{H}_{2} \mathrm{OH}$	$\begin{array}{ll} a & \delta=18.13(q) \\ b & \delta=57.79(t) \end{array}$
UNKNOWN A	
UNKNOWN B	
UNKNOWN C	

UNKNOWND	
UNKNOWNE	
UNKNOWN F	
UNKNOWN H G	

1) Provide reagents for the following reduction:

Identify the carbons in the reactant that are equivalent, label them as $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}$, etc.; complete the table with their respective estimated chemical shifts and splitting patterns: singlet (s), doublet (d), triplet (t) or quartet (q) that are determined from decoupling experiments. Repeat the process for the product.
REACTANT

Carbon(s)	$\delta \mathrm{ppm}$	Splitting	Carbon(s)	$\delta \mathrm{ppm}$
				Splitting

2) Provide reagents for the following oxidation:

Identify the carbons in the reactant that are equivalent, label them as a, b, etc.; complete the table with their respective estimated chemical shifts and splitting patterns: singlet (s), doublet (d), triplet (t) or quartet (q). Repeat the process with the product.
REACTANT

Carbon(s)	$\delta \mathrm{ppm}$	Splitting	Carbon(s)	$\delta \mathrm{ppm}$
				Splitting

3) Provide appropriate reagent(s):

Identify the respective carbons in the reactant that have identical chemical shifts, label them as $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}$, etc.; complete the table with their respective estimated chemical shifts and splitting patterns: singlet (s), doublet (d), triplet (t), quartet (q) or multiplet (m). Repeat for the product.
REACTANT

Carbon(s)	$\delta \mathrm{ppm}$	Splitting	Carbon(s)	$\delta \mathrm{ppm}$
				Splitting

4) A Chem 298 summer research student attempted to reduce 2-octanone with lithium aluminum hydride. The following ${ }^{13} \mathrm{C}$ NMR data was obtained.

14.10	(q)
23.45	(t)
25.88	(t)
29.48	(t)
31.98	(t)
39.49	(t)
68.03	(d)

Draw the structure of the expected product and explain whether the reduction was successful based on the ${ }^{13} \mathrm{C}$ NMR data.

Structure:	Explanation:

5) Run the ${ }^{13} C$ NMRs of both partner's unknown, draw their respective structures below, identify the equivalent carbon atoms that have identical chemical shifts, label them as $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}$, etc.; complete the table with their respective chemical shifts and splitting patterns from the spectra.

Unknown \#: \qquad Unknown\#: \qquad

Carbon(s)	$\delta \mathrm{ppm}$	Splitting	Carbon(s)	$\delta \mathrm{ppm}$	Splitting

