Names:	_	Sec
Chem 227/ Dr. Rusay		

Postlab: Chiral Compounds and Green Chemistry: Reduction of a ketone by sodium borohydride and baker's yeast

PART I: Optical rotation, optical purity, enantiomeric excess

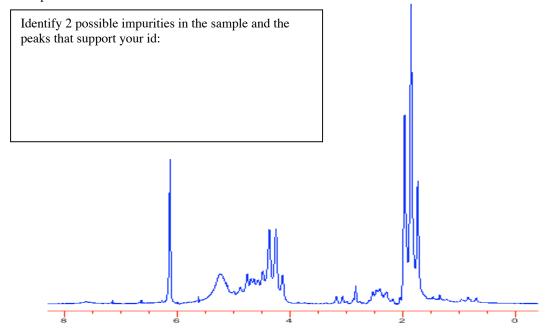
Determine the rotation of the product from Method 3 using the polarimeter and complete the following Data Table:

Cell path length =	Temperature =	$\lambda = 589 nm$	solvent =	$\alpha_{\text{solvent}} =$
100. mm	25 °C	(sodium D)	H ₂ O/ethanol	$0^{\rm o}$

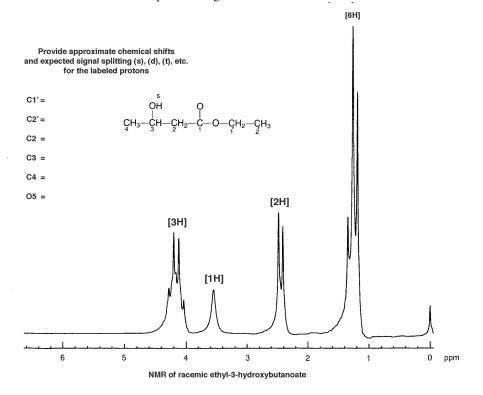
	Mass (g)	Volume (mL)	α	[\alpha] (calc.)
Method 1	4.80	25.00	0°	0°
Method 2	4.14	25.00	7.3°	
Method 3	3.82	25.00		

Calculations:

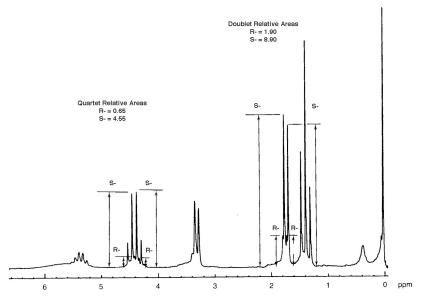
$$[\alpha]_2 =$$
 $[\alpha]_3 =$


Optical Purity (Enantiomeric Excess) Method 3 [Use the calculated $[\alpha]$ value for Method 2 for your calculation in Method 3.]

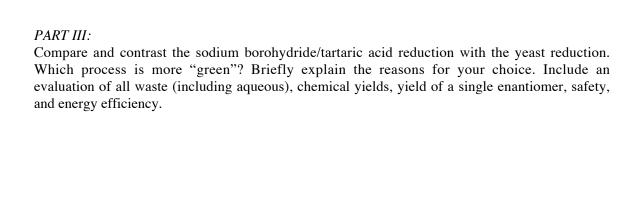
Complete the drawing for the correct configuration of the enantiomer that is in excess:


	[α]	Total % R-	Total % S-	Enantiomeric Excess: (%)	Abs. Config.
Product Method 3					

PART II: NMR, optical purity, enantiomeric excess (Refer to the handouts and the following spectroscopy data.)


Crude product Method 1:

Purified product Method 1. Provide the proton assignments:


Using the following NMR data complete the Table below.

NMR of the enantiomeric excess product, plus chiral shift reagent: Method #3, Sodium Borohydride / Tartaric Acid Chiral shift reagent = Tris[3-(heptafluoropropylhydroxymethylene)-(+)-camphorato] europium III

	[α]	Total % R-	Total % S-	Enantiomeric Excess: (%)	Abs. Config.
Product					
Method 3					
(Quartet)					
Product					
Method 3					
(Doublet)					
Product					
Method 3					
AVERAGE					

Compare the two methods of determing the enantiomeric excess. Which do you think is a better experimental method? Briefly explain your choice.

What methods of chemical characterization can you use to characterize the presence of an enantiomerically pure compound? Do the ¹H NMR and ¹³C NMR spectra of racemic mixtures look the same as those of an enantiomerically pure compound found in the mixture? Optical rotations? IR?

PART IV:

The following attached ¹H NMR was developed from a compiled sample of DVC student products. (Method 3) Complete the Table below showing yor calculations beneath the Table, and your measurements on the NMR

	Total % R-	Total % S-	Enantiomeric Excess: (%)
Product (Overtet)			
(Quartet) Product			
(Triplet)			
Product AVERAGE			

Compare your results with those in Part II. Briefly explain what could account for any difference in the enantiomeric excess between the two results.

