

¹H and ¹³C NMR compared:

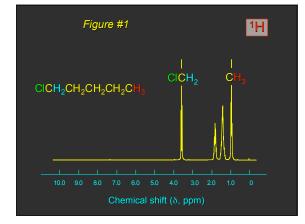
Both give information about the number of chemically nonequivalent nuclei (nonequivalent hydrogens or nonequivalent carbons)

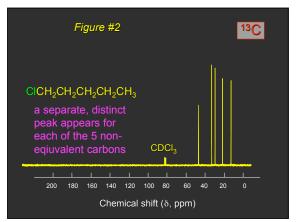
Both give information about the environmen of the nuclei (hybridization state, attached atoms, etc.)

FT-NMR techniques are standard practice for ¹³C NMR

¹H and ¹³C NMR compared:

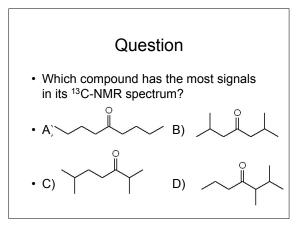
¹³C requires FT-NMR because the signal for a carbon atom is 10⁻⁴ times weaker than the signal for a hydrogen atom


A signal for a ¹³C nucleus is only about 1% as intense as that for ¹H because of the magnetic properties of the nuclei, and


The "natural abundance" level is only 1.1% of all the C atoms in a sample are ¹¹C (most are ¹²C)

¹H and ¹³C NMR compared:

¹³C signals are spread over a much wider range than ¹H signals making it easier to identify and count individual nuclei


Figure #1 shows the ¹H NMR spectrum of 1 chloropentane; Figure #2 shows the ¹³C spectrum. It is much easier to identify the compound as 1-chloropentane by its ¹³C spectrum than by its ¹H spectrum.

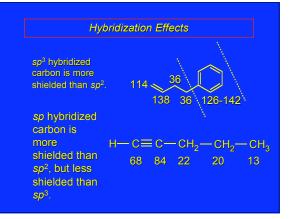
Question

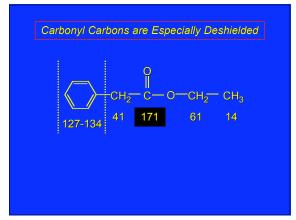
- How many signals would you expect to see in the ¹³C-NMR spectrum of *m*-chloroanisole?
- A) 4
- B) 5
- C) 6
- D) 7

¹³C Chemical Shifts are Most Affected By:

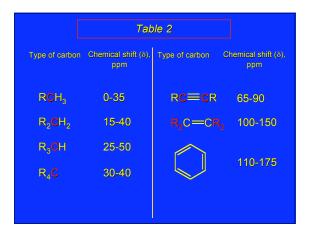
- Electronegativity of groups attached to carbon
- Hybridization state of carbor

Electronegativity has an even greater effect on ¹³C chemical shifts than it does on ¹H chemical shifts.


	Types of Carb	ons	
	Classification	Chemi	cal shift, δ
		¹ H	¹³ C
CH ₄		0.2	-2
CH ₃ CH ₃	primary	0.9	8
CH ₃ CH ₂ CH ₃	secondary	1.3	16
(CH ₃) ₃ CH	tertiary	1.7	25
(CH ₃) ₄ C	quaternary		28
Replacing H w C to which it is	ith C (more elect attached.	ronegativ	/e) deshield

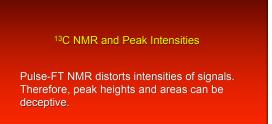

Electronegativity Effects on CH ₃			
	Chemic	al shift, δ	
	¹ H	¹³ C	
CH ₄	0.2	-2	
CH ₃ NH ₂	2.5	27	
CH₃OH	3.4	50	
CH ₃ F	4.3	75	

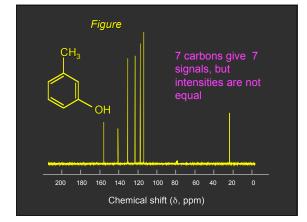
$$\mathsf{CI--CH}_2--\mathsf{CH}_2--\mathsf{CH}_2--\mathsf{CH}_2--\mathsf{CH}_3$$

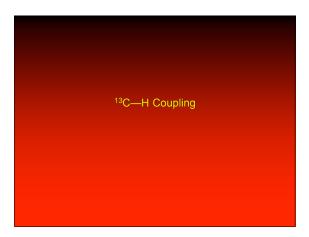

 $\begin{array}{cccccccc} \text{Chemical} & 45 & 33 & 29 & 22 & 14 \\ \text{shift, } \delta & & \end{array}$

Deshielding effect of CI decreases as number of bonds between CI and C increases.

	Table 1	
Type of carbon	Chemical shift (δ), ppm	
RCH ₃	0-35	
R_2CH_2	15-40	
R₃CH	25-50	
R ₄ C	30-40	

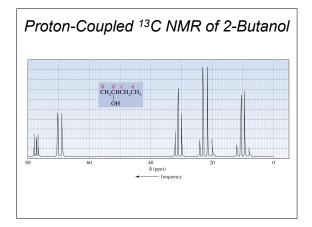

	Table 3	
Type of carbon	Chemical shift (b), ppm	
RCH₂Br	20-40	
RCH ₂ CI	25-50	
RCH ₂ NH ₂	35-50	
RCH ₂ OH	50-65	
R C H₂OR	50-65	

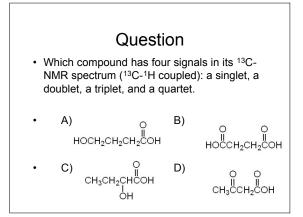

	Tab	ole 4	
Type of carbon	Chemical shift (ò), ppm	Type of carbon	Chemical shift (ò), ppm
RCH ₂ Br	20-40	Ŷ	
RCH₂CI	25-50	RÖOR	160-185
RCH ₂ NH ₂	35-50	Q	
R C H₂OH	50-65	RCR	190-220
RCH₂OR	50-65		

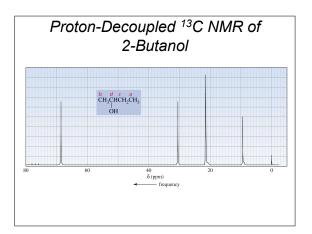

Type of carbon	Approximate chemical shift (ppm)	Type of carbon	Approximate chemical shift (ppm)
(CH3)4Si	0	C-I	0-40
R-CH3	8-35	C-Br	25-65
R-CH2-R	15-50	C-Cl C-N C-O	35-80 40-60 50-80
R R— <mark>C</mark> H—R	20-60	R -N	165-175
R-C-R	3040	RO RO	165-175
= <mark>C</mark>	65-85	R HO	175-185
- <mark>C</mark>	100-150	R C-O	190-200
C	110-170	R R R	205-220

Question In the ¹³C-NMR spectrum 1,2,3,5-tetramethylbenzene, how many peaks are more shielded than δ 80 ppm? A) 1 B) 2 C) 3

D) 4




Peaks in a ¹³C NMR spectrum


¹³C—¹³C splitting is not seen because the probability of two ¹³C nuclei being in the same molecule is very small.

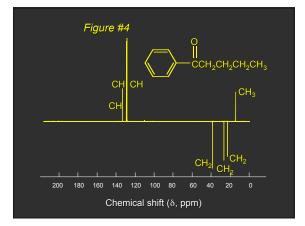
¹³C—¹H splitting occurs but is not seen when

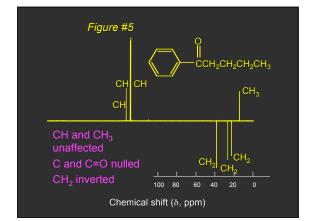
measured under conditions that suppres this splitting (broadband decoupling).

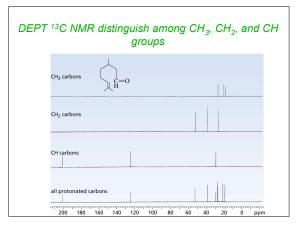
Measuring a ¹³C NMR spectrum involves

- Equilibration of the nuclei between the lower and higher spin states under the influence of a magnetic field
- 2. Application of a radiofrequency pulse to give an excess of nuclei in the higher spin state
- Acquisition of free-induction decay data during the time interval in which the equilibrium distribution of nuclear spins is restored
- 4. Mathematical manipulation (Fourier transform) of the data to plot a spectrum

Measuring a ¹³C NMR spectrum involves


Steps 2 and 3 can be repeated hundreds of times to enhance the signal-noise ratio


- 2. Application of a radiofrequency pulse to give an excess of nuclei in the higher spin state
- Acquisition of free-induction decay data during the time interval in which the equilibrium distribution of nuclear spins is restored


Measuring a ¹³C NMR spectrum involves

In DEPT, a second transmitter irradiates ${}^{1}H$ during the sequence, which affects the appearance of the ${}^{10}C$ spectrum.

some ¹³C signals stay the same some ¹³C signals disappear

Question

- Which isomer of $\rm C_6H_{14}$ is consistent with the following $^{13}\text{C-NMR}$ spectrum data? δ 11.1
- (CH₃); δ 18.4 (CH₃); δ 29.1 (CH₂); δ 36.4 (CH)
- A) *n*-hexane
- B) 2,3-dimethylbutane
- C) 2-methylpentane
- D) 3-methylpentane

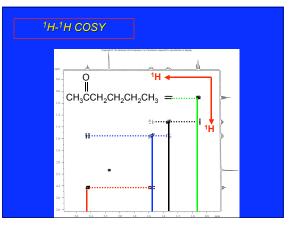
Question

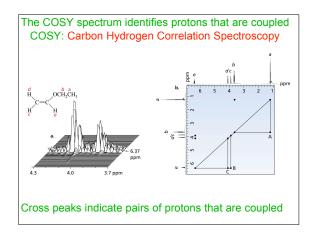
- Identify the C₄H₁₀O isomer on the basis of its ¹³C-NMR spectrum data: δ 31.2 (CH₃, 3C); δ 68.9 (C, 1C)
- A) 2-butanol
- B) 2-methyl-2-propanol
- C) 1-butanol
- D) CH₃CH₂-O-CH₂CH₃

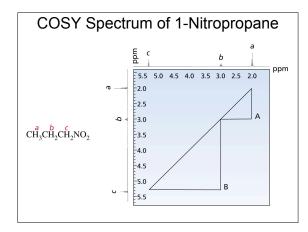
2D NMR Methods:

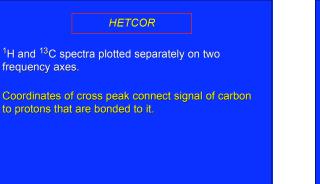
COSY: Carbon Hydrogen Correlation Spectroscopy HETCOR: Heteronuclear Chemical Shift Correlation NOESY: Nuclear Overhauser Effects Spectoscopy TROSY: Translation Relaxation Optimized Spectroscopy

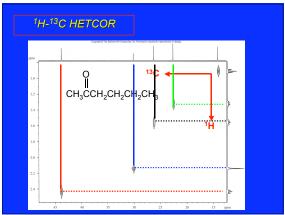
2D NMR: COSY AND HETCOR


2D NMR Terminology


1D NMR = 1 frequency axis 2D NMR = 2 frequency axes


COSY = Correlated Spectroscopy


¹H-¹H COSY provides connectivity information by allowing one to identify spin-coupled protons.


x,y-coordinates of cross peaks are spin-coupled protons

