

Relationships between acidity and basicity constants	
	$K_{\rm a} K_{\rm b} = 10^{-14}$
	$pK_a + pK_b = 14$

Effect of Structure on Basicity

- •1. Alkylamines are slightly stronger bases than ammonia.
- •2. Alkylamines differ very little in basicity.

•Amine	Conj. Acid	рК _а
•NH ₃	NH_4^+	9.3
• $CH_3CH_2NH_2$	$CH_3CH_2NH_3^+$	10.8
•(CH ₃ CH ₂) ₂ NH	$(CH_3CH_2)_2NH_2^+$	10.9
•(CH ₃ CH ₂) ₃ N	(CH ₃ CH ₂) ₃ NH⁺	11.1
Notice that the difference secondary, and terti	rence separating a pr ary amine is only 0.3	imary, pK units.

Basicity of Amines in Aqueous Solution

Effect of Structure on Basicity

- •1. Alkylamines are slightly stronger bases than ammonia.
- •2. Alkylamines differ very little in basicity.
- •3. Arylamines are much weaker bases than ammonia.

Basicity of Ami	nes in Aqueous Sc	olution
•Amine	Conj. Acid	рК _а
•NH ₃	NH_4^+	9.3
•CH ₃ CH ₂ NH ₂	$CH_3CH_2NH_3^+$	10.8
•(CH ₃ CH ₂) ₂ NH	$(CH_3CH_2)_2NH_2^+$	10.9
•(CH ₃ CH ₂) ₃ N	(CH ₃ CH ₂) ₃ NH⁺	11.1
$\cdot C_6H_5NH_2$	$C_6H_5NH_3^+$	4.6

	Decreased ba	sicity of aryla	amines
•Incr weal weal	easing delocaliza ker base than an ker base than dip	ation makes dip iline, and triphe phenylamine.	phenylamine a enylamine a
	C ₆ H₅NH₂	(C ₆ H ₅) ₂ NH	(C ₆ H ₅) ₃ N
K_{b}	3.8 x 10 ⁻¹⁰	6 x 10 ⁻¹⁴	~10 ⁻¹⁹

- •1. Alkyl groups on the ring increase basicity, but only slightly (less than 1 pK unit).
- •2. Electron withdrawing groups, especially ortho and/or para to amine group, decrease basicity and can have a large effect.

Aniline is 3800 times more basic than *p*-nitroaniline.
Aniline is ~1,000,000,000 times more basic than 2,4-dinitroaniline.

Preparation of Amines by Reduction

•Almost any nitrogen-containing compound can be reduced to an amine, including:

 azides nitriles nitro-substituted benzene derivatives amides

Preparation of Amines by Reduction

Reductive Amination

Synthesis of Amines via Reductive Amination In reductive amination, an aldehyde or ketone is subjected to catalytic hydrogenation in the presence of ammonia or an amine. fast Ç=0 + NH₃ ==== C=NH + H₂O R' •The aldehyde or ketone equilibrates with the imine faster than hydrogenation occurs.

Amines & Neurotransmitters

т	able 2.1: Major Neurotransmitters in the Body 5.7.8
Neurotransmitter	Role in the body
Acetylcholine	A neurotransmitter used by spinal cord neurons to control muscles and by many neurons in the brain to regulate memory. In most instances, acetylchsline is excitatory.
Dopamine	The neurotransmitter that produces feelings of pleasure when released by the brain reward system. Dopamine has multiple functions depending on where in the brain it acts. It is usually inhibitory.
GABA (gamma-aminobutyric acid)	The major inhibitory neurotransmitter in the brain.
Giutamate	The most common excitatory neurotransmitter in the brain.
Giycine	A neurotransmitter used mainly by neurons in the spinal cord. It probably always acts as an inhibitory neurotransmitter.
Norepinephrine	Norepinephrine acts as a neurotransmitter and a hormone. In the peripheral ner- vous system, it is part of the fight-or-flight response. In the brain, it acts as a neurotransmitter regulating normal brain processes. Norepinephrine is usually excitatory, but is inhibitory in a few brain areas.
Serotanin	A neurotransmitter involved in many functions including mood, appetite, and sensory perception. In the spinal cord, serotonin is inhibitory in pain pathways.

http://www%2Drci.rutgers.edu%7Elwhidrugs/ http://web.indstate.edu/thcme/mwking/nerves.html#table http://www.shorg/brefingsdate/disclon.html http://aculty.washington.edu/chudler/amp.html

