Names:
Chem 227/ Dr. Rusay

Carbohydrates

1. Remember that a Fischer projection is a way of representing 3-D molecules on 2-D surfaces. As in all conventions, there are specific rules to be obeyed. (R)-Glyceraldehyde is the simplest monosaccharide. Convert the 3-D representation into the correct Fischer projection formula.

(R)-(+)-glyceraldehyde

Refer to (I): http://chemconnections.org/organic/chem227/naming-09.html
a. Draw a Fischer projection formula or Haworth formula for each of the six compounds, whichever you think more appropriate.
b. Name each compound: detailed generic or precise names accepted. Consider that one or more are not true "carbohydrates". They do not need to be named or classified.
c. Classify each carbohydrate. Indicate if it is a mono-, di-, or polysaccharide and if it is a reducing or a non-reducing sugar.

Name: [mono- / di- / poly-] [reduce / non]	Name: [mono- / di- / poly-] [reduce / non]	Name: [mono- / di- / poly-] [reduce / non]
Name: [mono- / di- / poly-] [reduce / non]	Name: [mono- / di- / poly-] [reduce / non]	Name: [mono- / di- / poly-] [reduce / non]

3. Provide structures that satisfy the following descriptions:
a. The aldopentose that would give the same aldaric acid as D-arabinose upon oxidation with nitric acid.
b. The enediol that is an intermediate in the isomerization of the carbonyl group of D -arabinose from the 1position to the 2-position in aqueous base.

a.	b.

4. Provide structures for the major organic products of the following reactions:

b. D-mannose $\xrightarrow[\text { cat } \mathrm{H}_{3} \mathrm{O} \oplus]{\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}}$ (give chair conformation of product(s))
c. D-glucose $\xrightarrow[\mathrm{H}_{2} \mathrm{O}]{\mathrm{NaBH}_{4}}$ (draw Fischer projection)

a.	b.	c.

d.
 a primary alcohol, $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{6}$ (give chair conformation)
e.

2. $\mathrm{H}_{3} \mathrm{O}^{\oplus}, \mathrm{H}_{2} \mathrm{O}, \Delta \mathrm{HCN}$
3. $\mathrm{H}_{2}, \mathrm{Pd}\left(\mathrm{BaSO}_{4}\right)$
4. $\mathrm{H}_{3} \mathrm{O}^{\oplus}, \mathrm{H}_{2} \mathrm{O}$

d.	e.

5. Refer to: http://chemconnections.org/organic/chem227/naming-09.html
a) Select two planets that reflect the proportional difference between the size of a glucose molecule relative to a virus.

b) Select three planets that reflect the proportional difference between the respective sizes of a virus, a bacterium and a red blood cell.

c) How many glucose molecules could be contained within: i) the space of a virus and ii) the space of a red blood cell? ($\mathrm{V}=4.189 \mathrm{r}^{3}$) Show your calcualtions.

6. Complete the Wordsearch. Fill-ins for the blanks can be placed at the bottom of the page.

Sugar Wordsearch

Terry L. Helser

Department of Chemistry, SUNY College at Oneonta, Oneonta, NY 13820-4015; helsert@oneonta.edu
This puzzle contains 29 names, terms, prefixes, and acronyms that describe sugars and their polymers. Find and highlight these terms in the matrix below. "CARBOHYDRATE" is already done for you. Then, correctly transfer them to the blanks in the description below the matrix. Use the letters remaining in the matrix to complete the sentence describing these molecules. Your success will be rewarded. The answers to the Sugar Wordsearch are found below. Good hunting!

N I E T O R P O C Y L G S U
N I T I H C G L U COSEG
K E T O S ES S E S O D LA
EAGCHEXOSEIPER
S S L S E S OBIRAYSS
O U Y TMPAMAMKRON
T G CARBOHYDRATE
CAORENCLLIFNCG
ARLCOCOEYSWOUO
L N I HASELPMISRC
A A P S EREMONAEFY
G N I C U D ERETSEEL
E D D C E L L U L O S E T G

CARBOHYDRATEs can be S_____ S___-_s that are either A \qquad or K \qquad and are therefore R \qquad sugars. Table sugar, $\mathrm{S}_{\ldots} \ldots \ldots$ _ , is a D \qquad of the $\mathrm{H}_{\text {_____ }} \mathrm{F}$ _______ and $\mathrm{G}_{\text {_______ }}$ in cyclic furanose and $\mathrm{P}_{\text {_______ forms, respectively. } \mathrm{L}_{\ldots} \ldots \ldots \ldots \text { is }}$ glucose linked to G \qquad Plants store energy in the ____saccharide S____, which contains A \qquad and $\mathrm{A}_{\text {_____ }}$ The animal equivalent is G \qquad The only ____mer in them is the alpha $\mathrm{A}_{\text {_____ }}$ of glucose. Beta-linked glucose or N-acetylglucosamine makes C______ or C____, respectively. Both are structural polymers. Complex molecules like G \qquad _s and ____ $P \ldots \ldots$ s have sugars attached. Finally, phosphodi____ bonds link R____ units in the backbone of ___. Converting the pentose into the deoxy form produces a ___ strand.

Use the remaining letters to fill in the following sentence:

