

	A	cid Strength	
S	Strong Acids: <u>Strong Acid</u> Hydrochloric Hydrobromic Hydroiodic Nitric Chloric Perchloric Sulfuric *		Formula HCl HBr HI HNO ₃ HClO ₃ HClO ₄ H ₂ SO ₄

QUESTION

Nitric acid, HNO₃, is considered to be a strong acid whereas nitrous acid, HNO₂, is considered to be a weak acid. Which of the statements here is fully correct?

- A. Nitric acid has an aqueous equilibrium that lies far to the right and NO_3^- is considered a weak conjugate base.
- B. Nitric acid has a stronger conjugate base than nitrous acid.C. The dissociation of nitrous acid compared to an equal
- concentration of nitric acid produces more H⁺. D. The equilibrium of nitrous acid lies far to the left and the
- D. The equinoritant of introus acto hes fail to the fert and the conjugate base is weaker than the conjugate base of nitric acid.

ANSWER

A) correctly compares equilibrium and conjugate base characteristics. The conjugate base of a strong acid is considered to be weak. The stronger the acid, the more reaction in water. Therefore, a weak acid's equilibrium is favored to the left.

The			[H ₃ O ⁺]	pH	[OH-]	рОН
The Deletions		BASIC	1.0 × 10 ⁻¹⁵	15.00	1.0 × 10 ¹	-1.00
Relations	C		1.0 × 10 ⁻¹⁴	14.00	1.0×10^{0}	0.00
Among	ASI		1.0×10^{-13}	13.00	1.0×10^{-1}	1.00
[H ₃ O ⁺],	B		1.0×10^{-12}	12.00	1.0×10^{-2}	2.00
рН.	H		1.0 × 10 ⁻¹¹	11.00	1.0×10^{-3}	3.00
			1.0×10^{-10}	10.00	1.0×10^{-4}	4.00
			1.0×10^{-9}	9.00	1.0×10^{-5}	5.00
and por			1.0×10^{-8}	8.00	1.0×10^{-6}	6.00
	ACIDIC	NEUTRAL	1.0×10^{-7}	7.00	1.0×10^{-7}	7.00
		ACIDIC	1.0 × 10 ⁻⁶	6.00	1.0×10^{-8}	8.00
			1.0×10^{-5}	5.00	1.0×10^{-9}	9.00
			1.0×10^{-4}	4.00	1.0×10^{-10}	10.00
			1.0×10^{-3}	3.00	1.0×10^{-11}	11.00
	띭		1.0 × 10 ⁻²	2.00	1.0×10^{-12}	12.00
	NO		1.0 × 10 ⁻¹	1.00	1.0×10^{-13}	13.00
	2		1.0 × 10 ⁰	0.00	1.0×10^{-14}	14.00
			1.0 × 10 ¹	-1.00	1.0×10^{-15}	15.00

QUESTION

In an aqueous solution at a particular temperature the $[H^+]$ was measured as 1×10^{-6} M. What is the $[OH^-]$ in the same solution? Is the solution acidic, basic, or neutral?

- A. $1 \times 10^{-20} M$; acidic B. $1 \times 10^{-8} M$; acidic C. $1 \times 10^{-6} M$; basic
- D.1 × 10⁻⁸ M; basic
- E.1 × $10^{-7}M$; neutral

Answer

In an aqueous solution at a particular temperature the [H+] was measured as 1×10^{-6} M. What is the [OH⁻] in the same solution? Is the solution acidic, basic, or neutral?

A. $1 \times 10^{-20} M$; acidic B. $1 \times 10^{-8} M$; acidic C. $1 \times 10^{-6} M$; basic D.1 × 10⁻⁸ *M*; basic E. 1 × 10⁻⁷M; neutral

 $K_{\rm w} = [{\rm H}^+][{\rm OH}^-] = 1.0 \times 10^{-14}$

OUESTION

An environmental chemist obtains a sample of rainwater near a large industrial city. The [H⁺] was determined to be 3.5×10^{-6} M. What is the pH, pOH, and [OH⁻] of the solution?

A. pH = 5.46; pOH = 8.54; $[OH^{-}] = 7.0 \times 10^{-6} M$ B. pH = 5.46; pOH = 8.54; $[OH^{-}] = 2.9 \times 10^{-9} M$ C. pH = 12.56; pOH = 1.44; $[OH^{-}] = 3.6 \times 10^{-2} M$ D.pH = 8.54; pOH = 5.46; $[OH^{-}] = 2.9 \times 10^{-9} M$

Refer to:

http://chemconnections.org/general/chem106/Acids%20an d%20Bases-WKS-2016.pdf https://phet.colorado.edu/sims/html/ph-scale/latest/ph -scale_en.html

https://phet.colorado.edu/sims/html/ph-scale/latest/ph -scale_en.html

 Increasing CO₂, decreasing ocean pH, long term effects? Coral reefs?
http://sos.noaa.gov/datasets/Ocean/ocean_acidification.html

