







| Small Organic Molecules<br>Common Functional Groups |                                  |  |
|-----------------------------------------------------|----------------------------------|--|
| <u>Name</u>                                         | <u>General Formula</u>           |  |
| Alcohols                                            | R-OH                             |  |
| Ethers                                              | R-O-R'                           |  |
| Amines                                              | R-NH <sub>2</sub>                |  |
| Carboxylic Acids                                    | O<br>R-C-OH                      |  |
| water ammonia                                       | methane formaldebyde formic acid |  |

| Small Organic Molecules<br>Common Functional Groups |                        |  |
|-----------------------------------------------------|------------------------|--|
| Name                                                | <b>General Formula</b> |  |
| Aldehydes                                           | O<br>R-C-H             |  |
| Ketones                                             | O<br>R-C-R'            |  |
| Carboxylic Acids                                    | O<br>R-C-OH            |  |
| Esters                                              | O<br>R-C-OR'           |  |
| Amides                                              | Q R"<br>R-C-Ń<br>R'    |  |



































#### **Proteins (Polypeptides)** Polypeptides

 Polypeptides are formed with a large number of amino acids (usually result in proteins with molecular weights between 6000 and 50 million amu).

#### **Protein Structure**

- Primary structure is the sequence of the amino acids in the protein.
- A change in one amino acid can alter the biochemical behavior of the protein. *Eg. Sickle Cell Anemia*





# ANSWER

D

The carbon will contain a double bond to oxygen, a single bond to nitrogen that will also have a single bond to a hydrogen atom. Although not directly part of the peptide linkage, the carbon will have a single bond to some other atom as will the nitrogen atom.

## Four Levels of Protein Structure

•1º : (Primary) The linear sequence of amino acids and disulfide bonds. eg. ARDV:Ala Arg Asp Val.

•2°: (Secondary) Local structures which include, folds, turns, ∝-helices and β-sheets held in place by hydrogen bonds. eg. hair curls, silk, denaturing egg albumin

•3° : (Tertiary) *3-D* arrangement of all atoms in a single polypeptide chain. eg. collagen

•4° : (Quaternary) Arrangement of polypeptide chains into a functional protein, eg. hemoglobin.

#### Different Protein Types -

- Enzymes: *Glutamine synthetase* 12 subunits of 468 residues each; total mol. wt. = 600,000 daltons
- Regulatory proteins: Insulin α -alpha chain of 21 residues, β - beta chain of 30 residues; total mol. wt. of 5,733 amu
- Structural proteins: Collagen Connectin proteins, β - MW of 2.1 million g/mol; length = 1000 nm; can stretch to 3000 nm.
- Transport proteins: Hemoglobin
- Contractile proteins: Actin, Myosin
- Specialized proteins: Antifreeze in fish

(A gene was first defined as: one piece of DNA that codes for one protein. The definition is being expanded beyond proteins to include certain types of RNA.)



## **Protein Structure**

- 1º: The linear sequence of amino acids and disulfide bonds eg. ARDV:Ala Arg Asp Val.
- 2°: Local structures which include, folds, turns, α-helices and β-sheets held in place by hydrogen bonds.
- 3<sup>o</sup> : *3-D* arrangement of all atoms in a single polypeptide chain.
- 4º : Arrangement of polypeptide chains into a functional protein, eg. hemoglobin.













| ANSWER                                                                     |  |
|----------------------------------------------------------------------------|--|
| Which pure substances will not form hydrogen bonds?                        |  |
| I) CH <sub>3</sub> CH <sub>2</sub> OH II) CH <sub>3</sub> OCH <sub>3</sub> |  |
| III) H <sub>3</sub> C–NH–CH <sub>3</sub> IV) CH <sub>3</sub> F             |  |
| A) I and II B) I and III C) II and III D) II and IV                        |  |
|                                                                            |  |

















## **Protein Structure**

- 1º : The linear sequence of amino acids and disulfide bonds eg. ARDV:Ala Arg Asp Val.
- 2°: Local structures which include, folds, turns, α-helices and β-sheets held in place by hydrogen bonds.
- 3<sup>o</sup> : *3-D* arrangement of all atoms in a single polypeptide chain.
- 4º : Arrangement of polypeptide chains into a functional protein, eg. hemoglobin.







