Names (Lab Group): _____

Density & Buoyancy

Part I: PhET Simulation / Buoyancy & Density Ratio https://phet.colorado.edu/sims/density-and-buoyancy/density_en.html

• Estimate the percentage of the wood, ice, and Styrofoam block that is under water while those blocks are floating. *Remember: the density of water is 1.00 kg/L.*

% Wood under water	% Ice under water	% Styrofoam under water	
Density of Wood	Density of Ice	Density of Styrofoam	

- Place the densities of the respective materials in the chart above. Compare these values to your estimations for the percentages.
- Create a formula to show what percent of a floating object would be submerged in **any** fluid using their respective densities.

% under = surface

Use the respective simulation for the scenario listed to the right of each box and complete the tables below.

Same Mass

Block	% submerged	Mass, kg	Volume, L	Density, kg/L	Objects
Blue	Sunk / 100%	5.00 kg			🔵 Custom
Yellow		5.00 kg	Floats	Floats	 Same Mass Same Values
Green		5.00 kg			 Same Volume Same Density
Red		5.00 kg			Mystery

Same Volume

Block	% submerged	Mass, kg	Volume, L	Density, kg/L	Objects
Blue		6.00 kg			🔵 Custom
Yellow		8.00 kg			Same Mass
Green		4.00 kg	Floats	Floats	 Same volume Same Density
Red		2.00 kg	Floats	Floats	 Mystery

Block	% submerged	Mass, kg	Volume, L	Density, kg/L	Objects
Blue		3.00 kg	Floats	Floats	🔵 Custom
Yellow		4.00 kg	Floats	Floats	🔵 Same Mass
Green		2.00 kg	Floats	Floats	Same Volume
Red		1.00 kg	Floats	Floats	 Same Density Mystery

Same Density

Mystery

Block	% submerged	Mass, kg	Volume, L	Density, kg/L	Objects
Yellow, A					Custom
Blue, B			Floats	Floats	🔵 Same Mass
Green, C			Floats	Floats	🔵 Same Volume
Red, D			Floats	Floats	🔵 Same Density
Purple, E					 Mystery

Questions

- Increasing the size (mass and volume) of an object: <u>increases</u> / <u>decreases</u> / <u>doesn't change</u> (circle one) the object's density. This is referred to as an: <u>intensive</u> (same regardless of amount) / <u>extensive</u> (depends on the amount) (circle one) property.
- 2. An object with a density of 0.67 kg/L floats in water. Approximately (circle one) $\frac{1/3}{1/2}$, $\frac{1/2}{2/3}$ of the object is **under** water.
- 3. An ice cube ($\rho = 0.9168 \text{ g/cm}^3$) dropped into a glass of 100% ethanol ($\rho = 0.789 \text{ g/mL}$) will <u>sink</u> or <u>float</u>?
- 4. Using the %-density ratio, determine the percentage of a white pine wooden cube, which is 10.0 cm on a side $(\rho = 0.400 \text{ g/cm}^3)$ would be submerged in water.
- 5. Using the %-density ratio, determine the percentage of a white pine wooden cube that is 20.0 cm on a side ($\rho = 0.400 \text{ g/cm}^3$) that would be submerged in pure ethanol.
- 6. Gasoline has a density of 0.7 g/mL. If one gallon of gasoline is mixed with 1 gallon of water.
 - a) the gasoline and water mix together
 - b) the gasoline and water don't mix and the gasoline is on top of the water.
 - c) the gasoline and water don't mix and the water is on top of the gasoline.
- 7. If one gallon of gasoline is mixed with 1 liter of water (about a quart).
 - a) the gasoline and water mix together
 - b) the gasoline and water don't mix and the gasoline is on top of the water.
 - c) the gasoline and water don't mix and the water is on top of the gasoline.

- 8. Determine the density of an unknown metal that displaces 4.5 L of water and is found to have a mass of 25.4 kg.
- 9. How much water will a 1.00 kg metal block displace with a density of 7.00 kg/L?
- 10. How much water will a 1.00 kg plastic block (ρ = 0.60 kg/L) displace when floating?
- 11. Develop a way to identify the 5 Mystery blocks based on what you have read and understood from the simulation and class presentations using the information in the simulation's Table and your method to identify the blocks.
 - a. Complete the following table: identify the most likely material for each colored block with <u>specific</u> <u>data</u> to support your identification.

Block	Material ID	Support Data
Yellow, A		
Blue, B		
Green, C		
Red, D		
Purple, E		

- b. Write a very brief general procedure (directions) in paragraph form with a few full sentences (similar to a recipe) for your experimental method. Do not use first person pronouns, (I or We), nor second person pronouns, (You). *Turn in on a separate page either typed or hand written that is attached to this form*
- 12. Mass is an *extensive* property as is volume. Briefly explain your answers to question #1 using this accepted information.