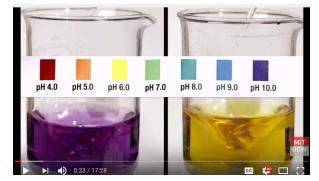
Acid-Base Equilibrium BUFFERS

Dr. Ron Rusay


BUFFERS

Weak Acid + Conj. Base or Weak Base + Conj. Acid Example:

 $H_2CO_3(aq) / HCO_3^{-1}(aq) / CO_3^{-2}(aq)$

 $H_2CO_3(aq) = HCO_3^{-1}(aq) + H^{+1}(aq) = CO_3^{-2}(aq) + 2H^{+1}(aq)$

 $\downarrow\uparrow \\
CO_2(g) + H_2O(l)$

https://www.youtube.com/watch?v=XR_0k8JlawY

https://www.youtube.com/watch?v=ZLKEjXbCU30

QUESTION

In the following equilibrium:

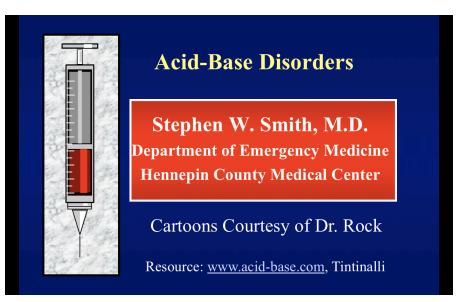
$$HCO_3^-(aq) + OH^-(aq) \leftrightarrows CO_3^{-2}(aq) + H_2O(l)$$

- A) HCO_3^{-1} is an acid and CO_3^{-2} is its conjugate base.
- B) H₂O is an acid and OH⁻ is its conjugate base.
- C) HCO₃⁻ is an acid and OH⁻ is its conjugate base.
- D) H_2O is an acid and CO_3^{-2} is its conjugate base.
- E) H₂O is an acid and HCO₃⁻ is its conjugate base.

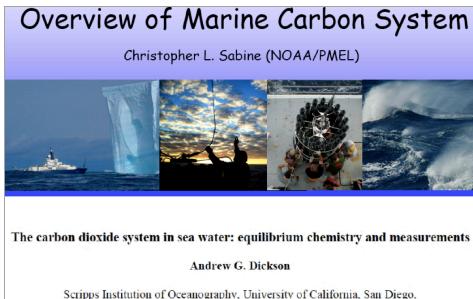
$H_2CO_3(aq) / HCO_3^{-1}(aq) / CO_3^{-2}(aq)$

One of many VERY IMPORTANT Buffer

Systems
"Bicarbonate"

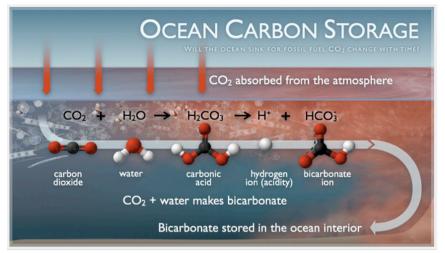

HCO₃-1(aq) / CO₃-2(aq)

$$CO_2(g) + H_2O(l) + HCO_3^{-1}(aq) + H^{+1}(aq) + CO_3^{-2}(aq) + 2H^{+1}(aq)$$

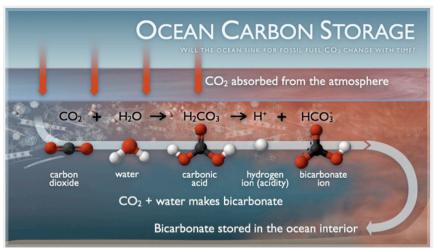

- 1. **Blood:** a human's blood serum volume is relatively small, 4-6 Liters with a narrow pH range, pH = 7.35 7.45; pH is maintained through buffering (homeostasis)

 Have you ever had respiratory alkalosis during an exam?
- 2. Oceans: an extraordinarily large volume of a "salt water" solution with a pH ~ 8.1; maintained through buffering

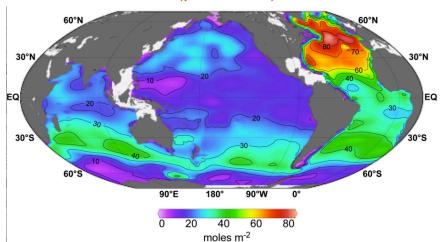
Human & Oceanic Bicarbonate Buffer Systems



http://chemconnections.org/general/chem121/Buffers/Buffers-Med-Pres.htm


http://chemconnections.org/general/chem121/Buffers/Buffers-CO2-Oceans-2011.htm

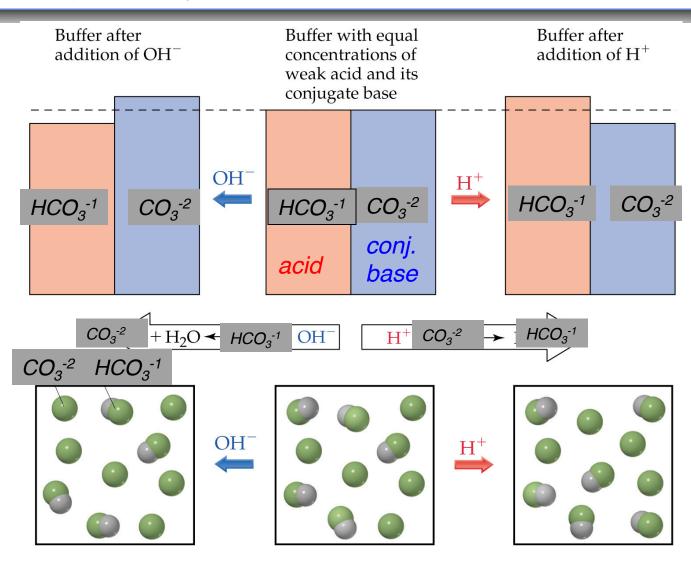
9500 Gilman Drive, La Jolla, CA 92093-0244, USA adickson@ucsd.edu



EQUILIBRIUM

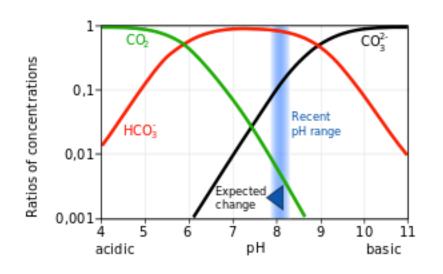
CO2 Chemistry & Oceanic Storage

 $TOTAL = 39 \ PtC \ (petatons) \ of \ carbon = 10^{12}$


Oceans adding ~2.4 Gt CO_2 /yr TOTAL atmospheric added ~ 10 GtC/yr $G = giga = 10^9$

$$CO_2(g) + H_2O(l) + H_2CO_3(aq) + H_2CO_3(aq) + H_2O_3^{-1}(aq) + H_2O(l)$$

https://www.youtube.com/watch?v=ugCjVK0dCSE


Bicarbonate Buffer Systems

https://www.youtube.com/watch?v=xuttOKcTPQs

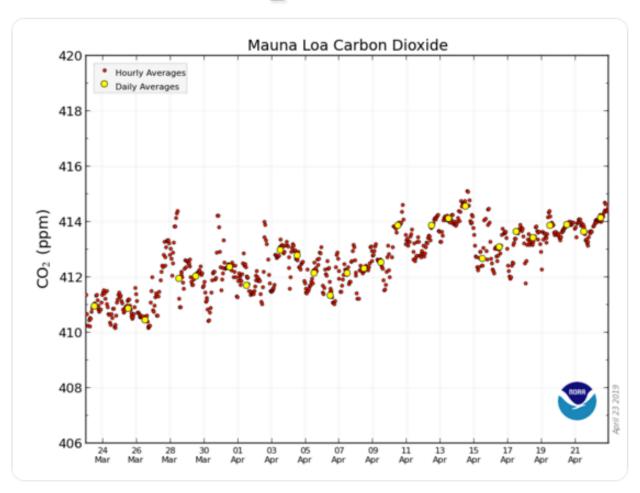
EQUILIBRIUM

CO₂: Buffering & Affects on Carbonate

$$CO_2(g) + H_2O(l) + HCO_3^{-1}(aq) + H^{+1}(aq) + CO_3^{-2}(aq) + 2H^{+1}(aq)$$

Ocean acidification: pH ~ 8.1 and falling

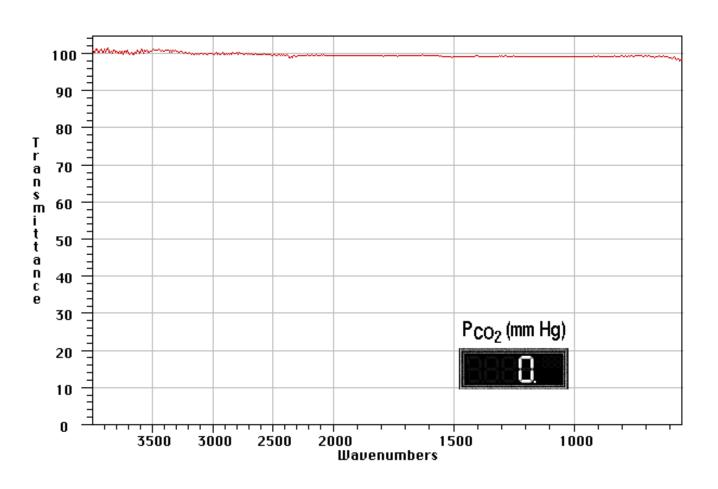
Increasing CO₂ is decreasing ocean pH with long term effects.


https://www.youtube.com/watch?v=ogZkV-Yj7Hc

(Carbon) Global Warming Energy (CO_2) (Carbon) (CO_2) Economy (Jobs) World energy consumption 20 Energy, 1000 TWh per year 15 Oil Coal 10 Natural Gas Hydro Nuclear Other Renewable 2000 1970 1980 1990 2010 Year

https://www.co2.earth/

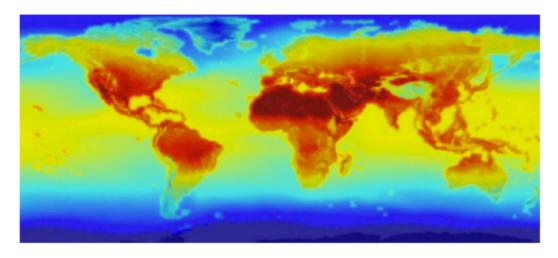
CO₂ Variation



5:44 AM - 23 Apr 2019

https://www.co2.earth/daily-co2

Infrared Spectra: CO₂ Concentration Effects


Nitrogen & Oxygen produce flat lines: 100% Transmission, 0 Absorbance

Bonus Due May 22nd

Global Warming & Your Carbon Footprint

http://chemconnections.org/general/chem108/Global%20Warming%20Bonus.html

The United Nations' Nobel Prize winning International Panel on Climate Change (IPCC: http://www.ipcc.ch/) of more than 1,000 scientists have concluded that "Human influence on the climate system is clear, and recent anthropogenic (man made) emissions of greenhouse gases are the highest in history, The atmospheric concentration of key greenhouse gases — carbon dioxide, methane, and nitrous oxide — is unprecedented in at least the last 800,000 years, and our fossil-fuel driven economies and (mankind's) ever-increasing population are to blame."

http://chemconnections.org/general/chem108/Global%20Warming%20Bonus.html