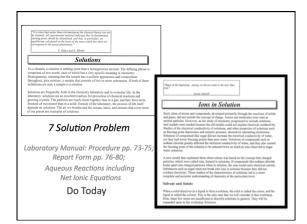
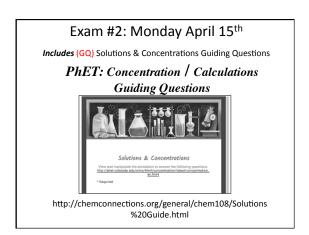
Chem 108: Lab
Week 11


Sign in Pick up graded papers Sit at Lab Drawer Station


Chemical Reactions

Laboratory Manual: Report Form pp.46-52 DUE Today

Post Lab (Individually Submitted): On-line Balancing Equations DUE Today

Complete Guiding Questions & Submit before Exam 2 Qualitative & Quantitative Questions dealing with 3 Understand different what is a solutions, solvent and a Molarity (M), solute; plus Molarity (M) applications. Focus on first 4 questions for Exam 2. http://chem connections.org/general/chem 108/Solutions % 20 Guide.html

Aqueous Reactions
(Solutions/Molarity)
Molarity (M) = mol_{solute} / Liter of solution

Net Ionic Equations
Dr. Ron Rusay

Aqueous Reactions & Solutions

- ♠ Many reactions are done in a homogeneous liquid or gas phase which generally improves reaction
- ♠ The prime medium for many inorganic reactions is water, which serves as a solvent (the substance present in the larger amount), but does not react
- ✿ The substance(s) dissolved in the solvent is (are) the solute(s). Together they comprise a solution. The reactants would be the solutes.
- ♠ Reaction solutions typically have less solute dissolved than is possible and are "unsaturated"

Aqueous Reactions

- ♣ There are a few general types:
 - 1) Precipitation: An insoluble salt forms from the addition of solutions. (Cloudiness is oberved. Solubility

- 2) Acid-Base (Neutralization): generally produces a salt, plus heat + water (I):
- 3) Oxidation-Reduction (Redox): there is a change in oxidation numbers between reactants and products

Aqueous Reactions: Neutralization

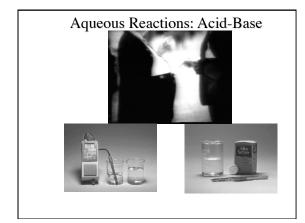
Aqueous Reactions: Neutralization

Net Ionic Equations

$$\begin{aligned} \mathsf{HCI}_{(\mathsf{aq})} + \mathsf{NaOH}_{(\mathsf{aq})} &\longrightarrow \mathsf{NaCI}_{(\mathsf{aq})} + \mathsf{H}_2\mathsf{O}_{(\mathsf{I})} \\ & \stackrel{\delta}{\circ} \; \frac{\mathsf{HCI}_{(\mathsf{aq})}}{\mathsf{NaOH}_{(\mathsf{aq})}} &\longrightarrow \mathsf{Na^+}_{(\mathsf{aq})} + \mathsf{CI^-}_{(\mathsf{aq})} \\ & \stackrel{\delta}{\circ} \; \frac{\mathsf{NaOH}_{(\mathsf{aq})}}{\mathsf{Na^+}_{(\mathsf{aq})}} &\longrightarrow \mathsf{Na^+}_{(\mathsf{aq})} + \mathsf{CI^-}_{(\mathsf{aq})} \\ & \stackrel{\mathsf{NaCI}_{(\mathsf{aq})}}{\mathsf{Na^+}_{(\mathsf{aq})}} + \mathsf{OH}_{(\mathsf{aq})} + \overset{\mathsf{H}_{\mathsf{+}}_{\mathsf{+}}_{\mathsf{qq}}}{\mathsf{H}_2\mathsf{O}_{(\mathsf{I})}} \\ & \stackrel{\mathsf{Na^+}_{(\mathsf{aq})}}{\mathsf{Na^+}_{(\mathsf{aq})}} + \overset{\mathsf{CI^-}_{(\mathsf{aq})}}{\mathsf{CI}_{(\mathsf{aq})}} + \overset{\mathsf{H}_{\mathsf{+}}_{\mathsf{2}}_{\mathsf{Q}}}{\mathsf{O}_{(\mathsf{I})}} \\ & \stackrel{\mathsf{H}_{\mathsf{+}}_{(\mathsf{aq})}}{\mathsf{H}_{\mathsf{+}}_{(\mathsf{aq})}} + \mathsf{OH}_{\mathsf{-}_{(\mathsf{aq})}} &\longrightarrow \mathsf{H}_2\mathsf{O}_{(\mathsf{I})} \end{aligned}$$

OUESTION

In the balanced molecular equation for the neutralization of sulfuric acid, H₂SO_{4 (aq)}, with sodium hydroxide, the products in the balanced equation are:


- A) NaSO_{4 (aq)} + $H_2O_{(I)}$
- B) NaSO_{3 (aq)} + 2 $H_2O_{(l)}$


- C) 2 NaSO_{4 (aq)} + H₂O_(l) D) Na₂S_(aq) + 2 H₂O_(l) E) Na₂SO_{4 (aq)} + 2 H₂O_(l)

QUESTION

All balanced net ionic equations when reduced to the smallest common stoichiometric number is the same for the neutralization of all acids: eg. sulfuric acid, $\rm H_2SO_{4\,(aq)}$, nitric acid $\rm HNO_3$, phosphoric acid $\rm H_3PO_4$ and all others.

- A) True
- B) False
- $X H^{+}_{(aq)} + X OH^{-}_{(\overline{aq})} \rightarrow X H_{2}O_{(l)}$

What type of reaction is it?

Double Displacement
& Precipitation

Write a balanced equation for the reaction.

 $Pb(NO_3)_2 (aq) + 2 Nal (aq) \rightarrow$ 2 NaNO₃(aq) + Pbl ₂(s)

How do you know the state of the products: (s) vs. (aq)?

The Reaction of Pb(NO₃)₂ and Nal

What type of reaction is it?

Double Displacement
& Precipitation

Write a balanced equation for the reaction.

 $Pb(NO_3)_2 (aq) + 2 Nal (aq) \rightarrow$ 2 NaNO₃(aq) + Pbl ₂(s)

How do you know the state of the products: (s) and (aq)?

Precipitation Reactions: Solubility Tables (aq) *soluble* versus (s) *insoluble*

Simple Rules for the Solubility of Salts in Water

- 1. Most nitrate (NO₃⁻) salts are soluble.
- 2. Most salts containing the alkali metal ions (Li $^+$, Na $^+$, K $^+$, Cs $^+$, Rb $^+$) and the ammonium ion (NH $_4$ $^+$) are soluble.
- 3. Most chloride, bromide, and iodide salts are soluble. Notable exceptions are salts containing the ions Ag^+ , Pb^{2^+} , and $Hg_2^{-2^+}$.
- 4. Most sulfate salts are soluble. Notable exceptions are $BaSO_4,\,PbSO_4,\,Hg_2SO_4,$ and $CaSO_4,\,$
- Most hydroxide salts are only slightly soluble. The important soluble hydroxides are NaOH and KOH. The compounds Ba(OH)₂, Sr(OH)₂, and Ca(OH)₂ are marginally soluble.
- 6. Most sulfide (S $^{2-}$), carbonate (CO $_3{}^{2-}$), chromate (CrO $_4{}^{2-}$), and phosphate (PO $_4{}^{3-}$) salts are only slightly soluble.

The Reaction of Pb(NO₃)₂ and Nal

Double Displacement & Precipitation

 $Pb(NO_3)_2 (aq) + 2 Nal (aq) \rightarrow$ 2 NaNO₃(aq) + Pbl ₂(s)

Net Ionic Equation (NIE) & state of the products:
 (aq) versus (s)

 Pb^{2+} (aq) + 2 I^{-} (aq) $\rightarrow PbI_{2}$ (s)

The Reaction of Pb(NO₃)₂ and Nal

 $Pb(NO_3)_2$ (aq) + 2 NaI (aq) \rightarrow 2 NaNO₃(aq) + PbI ₂(s)

Balanced Net Ionic equation for the reaction.

Pb $^{2+}(aq) + 2 I^{1-}(aq) \rightarrow PbI_{2}(s)$

What are the spectator ions in the reaction?

2 Na 1+ (aq); 2 NO₃1- (aq)

QUESTION

Given the insoluble compound Al₂(CO₃)₃(s) predict the ions and coefficients that would be necessary to complete the following net ionic equation:

$$+$$
 \rightarrow $Al_2(CO_3)_3 (s)$

A. 2 AlCl₃(aq) + 3 Na₂CO₃(aq) also include 6 NaCl(aq)

B. $3 \text{ Al}^{3+}(\text{aq}) + 2 \text{ CO}_3^{2-}(\text{aq})$

C. $2 \text{ Al}^{3+}(\text{aq}) + 3 \text{ CO}_3^{2-}(\text{aq})$

D. $2 \text{ Al}^{3+}(aq) + 6 \text{ Cl}^{-}(aq) + 3 \text{ CO}_3^{2-}(aq) + 6 \text{ Na}^{+}(aq)$

Exam #2:

Content is through Chemical Reactions, Stoichiometry, Net Ionic Equations, and focuses on all topics since Exam 1

7 Solution Problem

Laboratory Manual: Procedure pp. 73-75; Report Form pp. 76-80; Aqueous Reactions including **Net Ionic Equations**

Do Today

To Do Today

Chem 108: Lab Week 11

7 Solution Problem

Given: 7 Unknown Solutions, which comprise the following set in some random order.

0.1 M AgNO₃ 0.1 M Ba(NO₃)₂ 0.1 M FeCl_3

0.1 M KSCN 0.1 M Pb(NO₃) 2 0.1 M Na₂SO₄

Objective:

Identify the individual unknowns, which correspond to the seven, based on their respective aqueous double displacement reactions when mixed with each other.

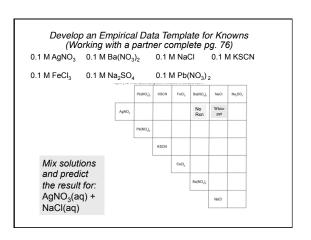
Consider that there is a 7x7 matrix for all combinations, 49 in total. However, the solutions do not react with themselves and it will not matter in which order that they are added: A to B, or B to A. Reducing the total to (N-1)! (6 factorial, i.e. 6+5+4+3+2+1=21 possibilities)

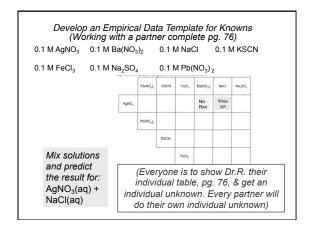
- 1. All ionic compounds containing Na $^+$, K $^+$, and NH $_4^+$ are soluble
- 2. All ionic compounds containing NO, are soluble
- 3. All ionic compounds containing C2H2O2- are soluble except AgC2H2O2-
- All ionic compounds containing Cl⁺, Br⁻, and I⁻ are soluble except AgCl, AgBr, AgI, PbCl₂*,
 PbBr₂, PbI₂, Hg₂Cl₂, Hg₂Br₂, and Hg₂I₂· (*PbCl₂* solubility is very dependent on concentration
 and temperature.)
- 5. All ionic compounds containing F- are soluble except MgF., CaF., SrF., BaF., and PbF.,
- 6. All ionic compounds containing SO $_4$ are soluble except BaSO $_4$, SrSO $_4$, and PbSO $_4$. (Ag $_2$ SO $_4$ and CaSO $_4$ are slightly soluble)
- 7. All ionic compounds containing $\mathrm{OH^-}$ are insoluble except NaOH, KOH, and $\mathrm{Ba(OH)}_2$
- 8. All ionic compounds containing S2- are insoluble except Na,S, K2S, (NH4)2S, MgS, CaS, SrS,
- 9. All ionic compounds containing CO,²-, PO,²-, and CrO,²- are insoluble except Na $_2$ CO $_3$, Na $_3$ PO $_4$, Na $_2$ CrO $_4$, K $_2$ CO $_3$, K $_3$ PO, $_4$, K $_2$ CO, $_4$, (NH, $_2$)CO, $_3$, (NH, $_2$)PO, $_4$ and (NH, $_2$)CrO, $_4$
- 10. All common acids are soluble

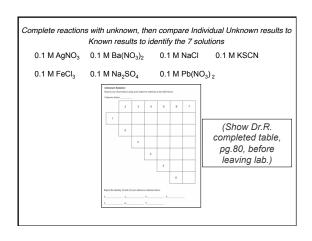
Develop an Em _l (Working wi 0.1 M AgNO₃ 0.1 M Ba	th a	oartn	er co	ompl	ete p	g. 7	6)
0.1 M FeCl ₃ 0.1 M Na	a ₂ SO ₂	ı	0.1	И Pb(NO ₃)	2	
	.,,	Pb(NO ₃) ₃	KSCN	FeCl,	Ba(NO ₃) ₂	NaCl	Na _s SO _s
	AgNO ₃						
		Pb(NO ₃) ₂					
			KSCN				
Mix solutions				FeCl ₃			
and predict the result for:					Ba(NO ₃) ₂		
$AgNO_3(aq) + Ba(NO_3)_3(aq)$						NaCl	

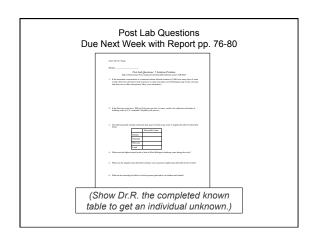
 $AgNO_3(aq) + Ba(NO_3)_2(aq) \rightarrow \underbrace{AgNO_3(aq) + Ba(NO_3)_2(aq) \rightarrow Nothing \ Observed}$ $Double \ Displacement \ Equation:$ $AgNO_3(aq) + Ba(NO_3)_2(aq) \rightarrow Ba(NO_3)_2(aq) + Ag(NO_3)(aq)$ $Net \ lonic \ Equation:$ $Ag^+(aq) + NO_3^-(aq) + Ba^{2+}(aq) + 2(NO_3^-)_2(aq) \rightarrow Ba^{2+}(aq) + 2(NO_3^-)_2(aq) \rightarrow Ba^{2+}(aq) + 2(NO_3^-)_2(aq) + NO_3^-(aq)$ $No \ Reaction / NR$

Develop an Em (Working v 0.1 M AgNO ₃ 0.1 M B	vith a	a part	ner o	comp	olete	pg. T	76)
0.1 M FeCl ₃ 0.1 M N	a ₂ SO	4	0.1 N	ЛPb(NO ₃)	2	
		Pb(NO ₃) ₃	KSCN	FeCi,	Ba(NO ₃) ₂	NaCl	Na ₃ SO ₄
	AgNO,				No Rxn		
		Pb(NO ₃) ₂					
			KSCN				
Mix solutions				FeCl ₃			
and predict the result for:					Ba(NO ₃) ₂		
$AgNO_3(aq) + Ba(NO_3)_2(aq)$						NaCl	


Develop an Empirical Data Template for Knowns (Working with a partner complete pg. 76)


0.1 M AgNO₃ 0.1 M Ba(NO₃)₂ 0.1 M NaCl 0.1 M KSCN


0.1 M FeCl₃ 0.1 M Na₂SO₄ 0.1 M Pb(NO₃)₂


| PANO₃ | XSCN | FAC, | BANO₃ | NAC | NA₃SO, |

	Displacement Equation: q) + NaCl(aq) \rightarrow AgCl(?) + NaNO ₃ (?)
AgNO₃(a	q) + NaCl(aq) \rightarrow AgCl(s) + NaNO ₃ (aq)
Net Ionic	Equation:
Ag⁺(aq) +	+ Cl⁻(aq) → AgCl(s)

