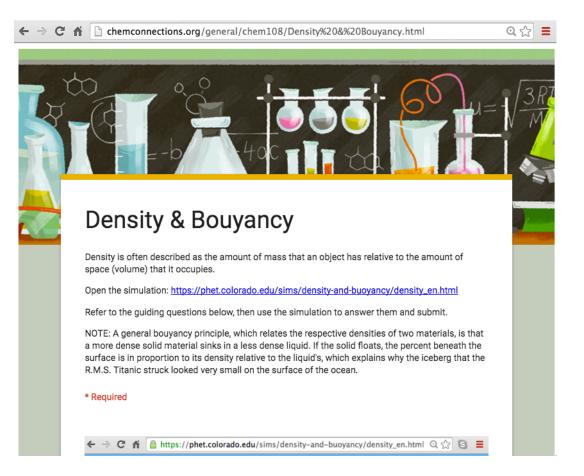
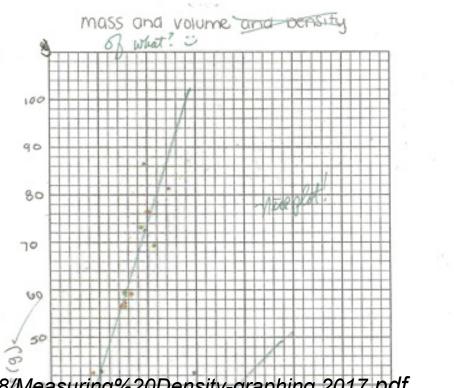
Chem 108: Lab Week 5

Sign in: Roster @ front of lab Remember the LETTER next to your name on the roster.

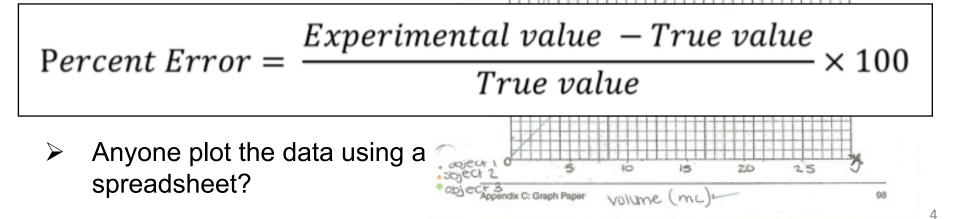

Pick up graded papers & handout

Due Today

- Completed density calculations, graphs & Report Forms pp.20-25 (One form for each lab partner are to be turned in; stapled together. Neatest one on top.)
- Check significant figures and calculations carefully. Uncertainty (+/-) values are not to be included, but measurement data must be correct relative to the experimental equipment used. Review returned Measurement Reports.
- (GQ) On-line *Density* & *Buoyancy Guiding Questions* (individually done)


• (GQ) On-line *Density* & *Buoyancy Guiding* DUE Today

http://chemconnections.org/general/chem108/Density%20&%20Bouyancy.html



Plot of data (A) & (B) using blank graph paper

- Either (A) & (B) on the same graph paper or separate pages.
- Attach graph(s) to the combined Report Form pages
- Complete the bottom table of handout and attach to the Report Forms to turn in.

http://chemconnections.org/general/chem108/Measuring%20Density-graphing.2017.pdf

Equation of a line: $\Delta y = m\Delta x + b$ y = y axis m = slope x = x axis b = y -interceptWe're plotting: Mass = y axis Volume = x axis \rightarrow How are mass and volume related? $\Delta mass = demoiter$

 $\Delta \overline{Volume} = density$

We can rearrange this as: mass = density(Volume)If we compare to equation of a line:

> mass = density(Volume) + 0 $\Delta y = m \quad \Delta x \qquad + b$

Now, what does the slope of our trendline represent? (Comparing the x,y values of any 2 points on the trendline.)

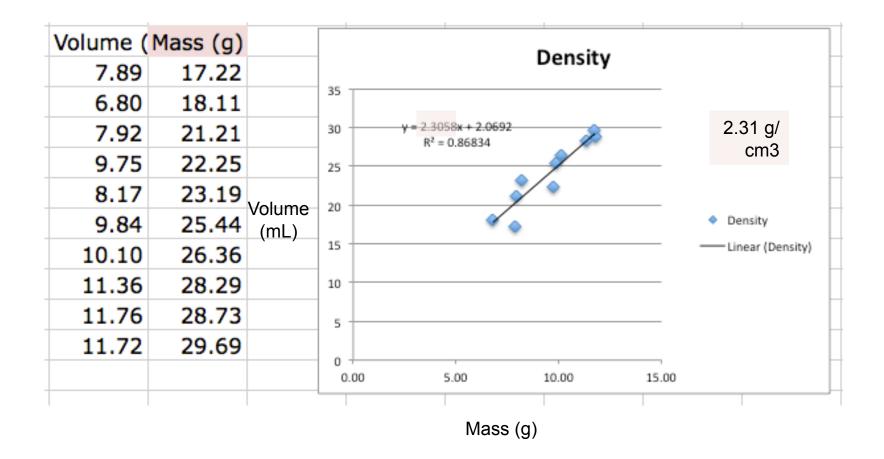
Using a Spreadsheet (Excel)

Density

Volume (cm3)	Mass (g)
7.89	17.22
6.80	18.11
7.92	21.21
9.75	22.25
8.17	23.19
9.84	25.44
10.1	26.36
11.4	28.29
11.8	28.73
11.7	29.69

AVG

Density


Using a Spreadsheet (Excel)

Density

	Volume (cm3)	Mass (g)	
	7.89	17.22	
	6.80	18.11	
	7.92	21.21	
	9.75	22.25	
	8.17	23.19	
	9.84	25.44	
	10.1	26.36	
	11.4	28.29	
	11.8	28.73	
	11.7	29.69	
AVG	9.53	24.05	
Density	/	2.52	g/cm3

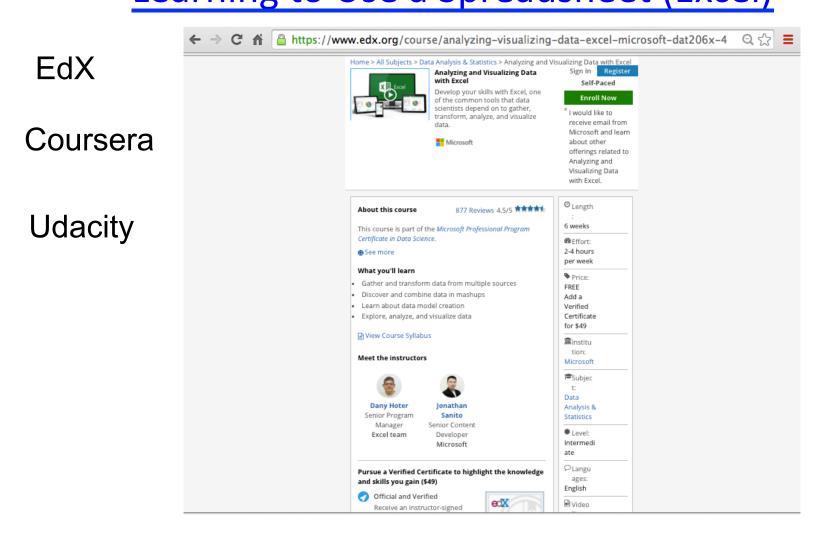
Using a Spreadsheet (Excel) Youtube

https://www.youtube.com/watch?v=3kNEv3s8TuA

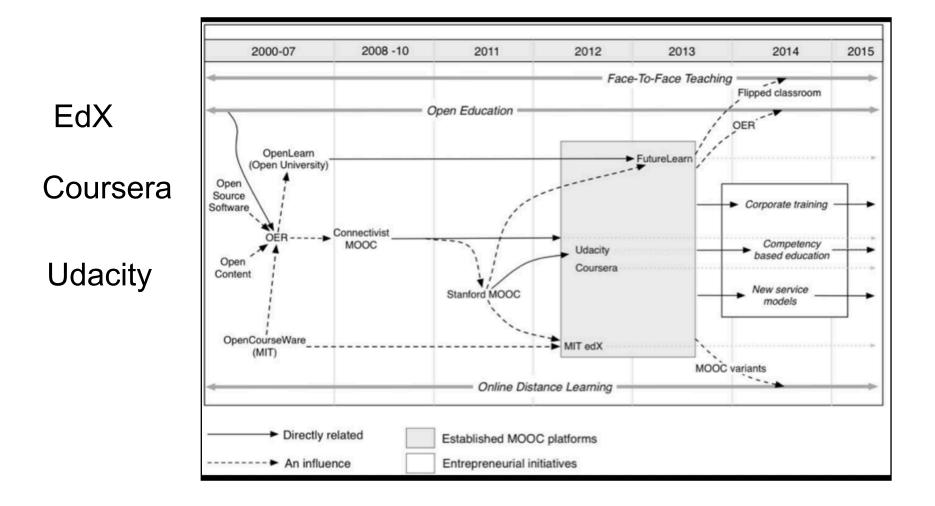
Using a Spreadsheet (Excel) Youtube

https://www.youtube.com/watch?v=3kNEv3s8TuA

Percent Error =	Experimental value – True value	× 100
rercent Error –	True value	× 100


А

Metal identified	AI = 2.64 g/cm3
Density (g/cm3) averaged	2.52 g/cm ³ +/-0.19
Error (%) averaged	(2.52-2.64)/2.64 * 100= 4.5%
Density (g/cm3) graphed	2.31 g/cm ³ +/-0.12
Error (%) graphed	(2.31-2.64)/2.64 * 100= 12.5%


Linear Regression straight lines improve precision. They do not necessarily improve accuracy.

MOOCs: "Free" Courses

https://www.edx.org/course/analyzing-visualizing-data-excel-microsoft-dat206x-4 Learning to Use a Spreadsheet (Excel)

MOOCs: "Free" Courses

QUESTION

Rank the correct relative precision of the results from the two methods for Metal A's density's calculation. It's accepted density is 2.64 g/cm^3

Density	Density
Data	Linear
Averaging	Regression
	Straight Line
2.52 g/cm3 +/-0.19	2.31 g/cm3 +/-0.12

A) Precision: Straight Line > AveragingB) Precision: Averaging > Straight Line

QUESTION

Rank the correct relative accuracy of the results from the two methods for Metal A's density's calculation. It's accepted density is 2.64 g/cm^3

Density	Density
Data	Linear
Averaging	Regression
	Straight Line
2.52 g/cm3 +/-0.19	2.31 g/cm3 +/-0.12

A) Accuracy: Straight Line > AveragingB) Accuracy: Averaging > Straight Line

Worksheet: Handout

Adapted from Workshop Chemistry

Name(s)

Precision, Accuracy & Period icity

1) Two students report the following data for the density of an unknown metal:

	Student 1	Deviation	Student 2	Deviation
Trial 1	22.0 g/cm ³	+0.1	23.0 g/cm^3	+1.1
Trial 2	21.8 g/cm ³	-0.1	21.0 g/cm ³	-0.9
Trial 3	22.0 g/cm ³	+0.1	21.3 g/cm ³	-0.6
Trial 4	21.8 g/cm ³	-0.1	22.3 g/cm ³	+0.4
Average	21.9 g/cm ³	+/- 0.1	21.9 g/cm ³	+/- 0.8

• The accepted value is 21.8 g/cm³.

• The error is 0.4% in both cases: (21.9 - 21.8)/21.8 x 100 = 0.4%

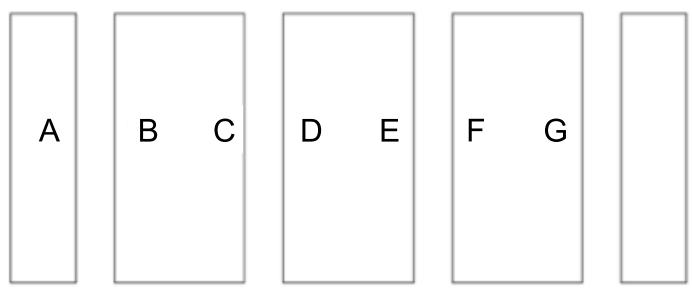
Should both students receive the same grade? Explain your answer.

2) In the early 1870's, Mendeleev predicted three "new" elements, their atomic masses and their densities: "Ekaboron", atomic mass = 44; "Ekaaluminium", atomic mass = 68, density = 5.9 g/cm^3 and "Ekasilicon", atomic mass = 72, density = 5.5 g/cm^3 .

a) Identify the three elements by their modern names from their masses and relative locations in the periodic table.

Ekaboron =

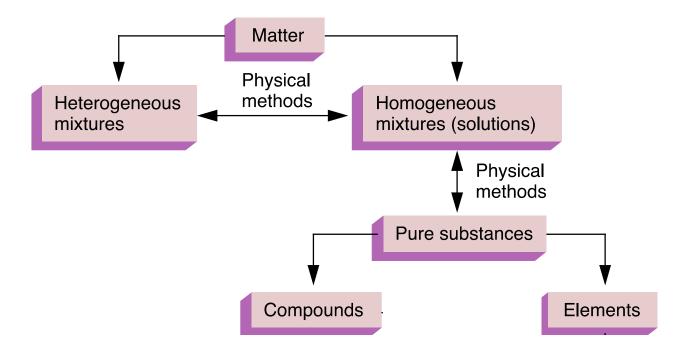
Ekaaluminum =


Ekasilicon =

Experimentation:

- Complete *Measuring Density* calculations, graphs & Report Form <u>pp.20-25</u> (One form for each lab partner to be turned in.) DUE Today
- (GQ) Density Guiding Questions DUE Today
- WORKSHEET (HANDOUT <u>pdf</u>): Precision, Accuracy & Periodicity, DUE Today (Turn in before leaving lab)

Experiment 3: Classification of Matter and Chemical Change Move to the lab location that matches your roster letter with the map letter Front of Lab



CHEM 108

Experiment 3: Classification of Matter and Chemical Change *refer to calendar link:*

http://www.chemconnections.org/general/chem108/Phys %20Properties-Separations%202017.htm

Write yours and all partners' names ON all REPORT FORMS, pp. 5-8, DUE Next Week

Classifying & Separating Matter Mixtures → Pure Substances

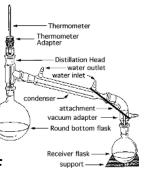
Classification of Matter and Chemical Change *Refer to the calendar link:*

http://www.chemconnections.org/general/chem108/Phys %20Properties-Separations%202017.htm

https://www.youtube.com/watch?v=q8Ent5CXhfY&t=17s Separating Mixtures

• Filtration: Separation of components in a mixture based upon differences in particle size. Examples: particles from air, coffee from grounds.

• Crystallization:


Separation based upon differences in solubility of components in a mixture. Example: rock candy

• Distillation:

Separation based upon differences in boiling of components in a homogeneous mixture. Example: gasoline from crude oil

http://chemconnections.org/general/movies/html-swf/oil-refining.swf

https://www.youtube.com/watch?v=q8Ent5CXhfY&t=17s

Separating Mixtures

• Extraction: Separation based upon differences in a compound's solubility between two different solvents, typically immiscible liquids. Examples: gasoline (hydrocarbons) and water.

• (Chemical Separation) Chromatography:

Separation based upon differences a compound's solubility in a solvent versus a stationary phase. Examples: paper chromatography, thin layer (TLC), column, gas-liquid (GC); liquid-liquid: (HPLC), reverse phase. Classification of Matter and Chemical Change

- ➤ Goals:
 - Part A: To classify a pure substance as a homogeneous or heterogeneous mixture and quantify the mixture's components
 - Part B: To classify a material as a pure substance or mixture based on observation
 - Part C: Using Paper Chromatography to classify inks as pure substances or homogeneous mixtures
 - > Part D: Determining if chemical changes occur.
- ➢ Work with your partners
 - Be sure to write partner's name ON ALL REPORT FORMS

Classification of Matter Part A: Procedural Scheme

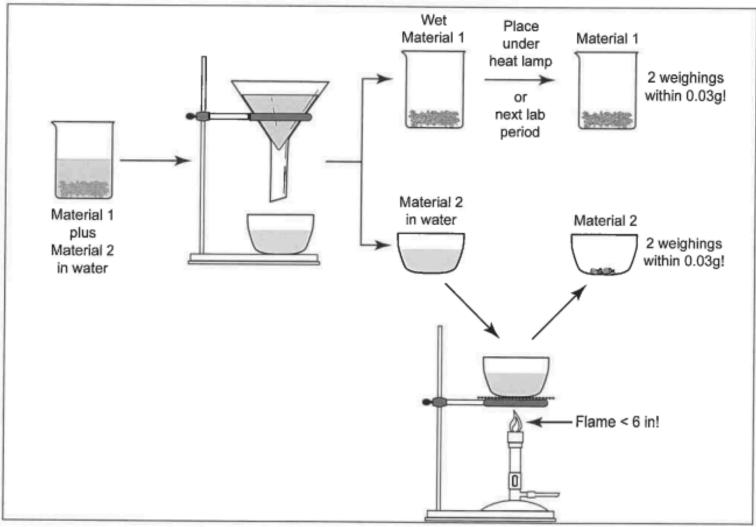
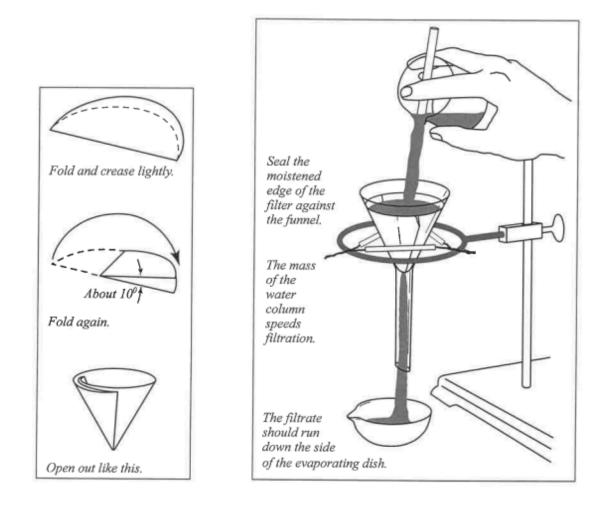


Figure 1-Overview of Part A

Classification of Matter and Chemical Change

Measuring solids (Part A):


1)Weigh empty container (beaker) & record mass

2)Remove beaker from balance and pour solid into the beaker

3)Place the beaker with the solid back on the balance & record mass

DO NOT pour any materials/ chemical into containers while on balance pan; clean area and balance of any loose /spilled materials/ chemicals before leaving, close all bottles

Classification of Matter Filtration

Part A

Use a minimal amount of H₂O when transferring solids from beaker into filter; too much causes evaporation time to be VERY long

≻PROCEDURE to note & follow:

•Boil filtrate *gently* until no drops are observed on watch glass

- If boiled too rapidly, crystals collect on watch glass
- SAFETY TIP: Hot evaporating dish will shatter if placed on cold lab bench – Allow to cool on grating before placing on bench

•DO NOT dry Material 1 and filter paper under heat lamp. Store in your lab drawer covered by paper towel . . . by the next lab session, they will be *very* dry

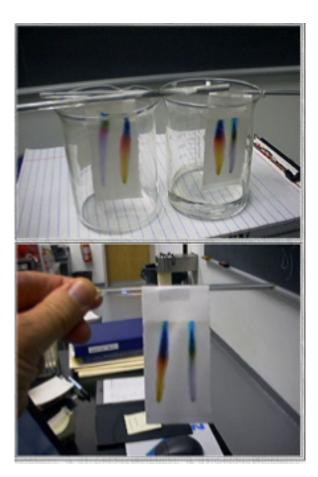
➤WASTE: (next lab session)

- Filter paper and Material 1 in trash
- > Material 2 in sink with H_2O running

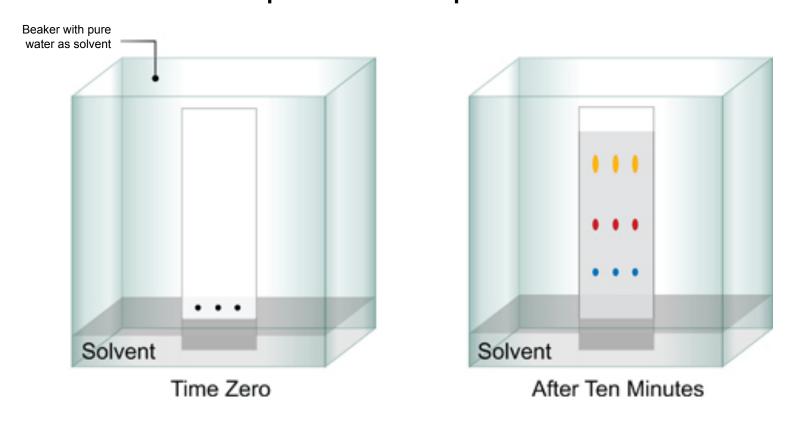
Part B: CuSO₄• 5H₂O

Copper(II) sulfate pentahydrate
May be labeled cupric sulfate pentahydrate
Heat the hydrate gently in a test tube

≻Waste:


- Add in minimum amount of H₂O and stir to dissolve all solid
- Pour solution into red "Aqueous Metal Waste" container in hood
- ➢Be sure to record "color" and/or "clarity" BEFORE discarding <u>any solutions or chemicals</u>

e.g.) solution: blue and cloudy, solution: colorless and clear, soliid: white



Classification of Matter

Part C – Paper Chromatography)

Part C – Paper Chromatography
➤ Use water-soluble pens that are provided, DO NOT use your own pen
➤ DO NOT use permanent pens/markers

Waste: paper in trash; water in sink

- PROCEDURE: <u>Before starting</u> Part D, dispense 3-4mL of 6M NaOH and 3-4mL of 6M HCI into separate test tubes: 6M means 6 Molar = 6 mol/L; Molarity is an important unit of concentration
- Take to YOUR LAB BENCH for Parts D.1 and D.3
- Avoid spilling NaOH or HCI
- If spilled, neutralize with solid NaHCO₃ (sodium bicarbonate) from bucket, then wipe with paper towel
 - An acid + base react to produce a salt and water
- ➢ Waste for D.1:
- Pour all solutions into NaHCO₃ in hood sink with H₂O running

Part D.2:

➤Waste for D.2:

Into red "Aqueous Metal Waste" container in hood

<u>Part D.3</u>:

• 20 drops HCI ≈ 1mL, add "dropwise"

≻Waste for D.3:

> Into NaHCO₃ in hood sink with H_2O running

<u>Part D.4</u>:

➤Waste for D.4:

Into red "Aqueous Metal Waste" container in hood

Exp. 3 – Classification of Matter and Chemical Change DUE Next Lab Period

Report Forms: One form for each lab partner are to be turned in; stapled together. Neatest one on top.

- Check sig figs are correct and units included
- > Show example of each type of calculation
- Answer questions legibly in complete sentences.

DUE Next Lab Period

Individually complete on-line post-lab questions and submit on-line: http://www.chemconnections.org/ general/chem108/Physical %20Properties.html

Ρ	hysical Properties
htt al%	fer to the reading: <u>p://chemconnections.org/general/chem106/Investigating%20Physic</u> <u>s20Properties.1.pdf</u> ovide answers to the following questions.
*R	equired
Na	me: Last, First *
Yo	ur answer
DV	′C id *
Yo	ur answer
La	b Section *
0	Monday
0	Wednesday
e-r	nail address *
Yo	ur answer
30	A mixture of sand and sawdust contains 124 g of sand and 5 g of sawdust. Find the mass percent of each component in s mixture. *
Pro	ovide % sand and % sawdust.
V~	ur answer

DUE Next Lab Period

Due Today

Experimentation:

- Complete *Measuring Density* calculations, graphs & Report Form <u>pp.20-25</u> (One form for each lab partner to be turned in.) DUE Today
- (GQ) Density <u>Guiding Questions</u> DUE Today
- WORKSHEET (HANDOUT <u>pdf</u>): Precision, Accuracy & Periodicity, DUE Today (Turn in before leaving lab)

Complete Worksheet in collaboration with your assigned group partners and turn in one form for entire group before leaving lab. *Due Today*

Worksheet:

Handout

Name(s)

Precision, Accuracy & Period icity

Adapted from Workshop Chemistry

1) Two students report the following data for the density of an unknown metal:

	Student 1	Deviation	Student 2	Deviation
Trial 1	22.0 g/cm ³	+0.1	23.0 g/cm ³	+1.1
Trial 2	21.8 g/cm ³	-0.1	21.0 g/cm ³	-0.9
Trial 3	22.0 g/cm ³	+0.1	21.3 g/cm ³	-0.6
Trial 4	21.8 g/cm ³	-0.1	22.3 g/cm^3	+0.4
Average	21.9 g/cm ³	+/- 0.1	21.9 g/cm ³	+/- 0.8

• The accepted value is 21.8 g/cm³.

• The error is 0.4% in both cases: (21.9 - 21.8)/21.8 x 100 = 0.4%

Should both students receive the same grade? Explain your answer.

2) In the early 1870's, Mendeleev predicted three "new" elements, their atomic masses and their densities: "Ekaboron", atomic mass = 44; "Ekaaluminium", atomic mass = 68, density = 5.9 g/cm^3 and "Ekasilicon", atomic mass = 72, density = 5.5 g/cm^3 .

a) Identify the three elements by their modern names from their masses and relative locations in the periodic table.

Ekaboron =

Ekaaluminum =

Ekasilicon =