
Chem 108: Lab

Week 8 Experiments:

What's My Formula?, Nomenclature & Molecular Modeling

Sign in; Sit with Group.

Front of Lab

Work with the groups from last week's lab.

What's My Formula? Your work group has 2 to 5 unknowns. Complete the experimental procedures and submit one complete report form the unknown worked on, with partner(s)' name(s) on the data form page & a complete set of clear calculations for each unknown with % Yield & Theoretical Yield Calculations (replacement for pg. 36)

Have data signed before leaving.

Complete Report Forms

DUE Next Lab

Name:	
Section:	
Report Form – What's My Formula	
Unknown Number	
Mass, Evaporating Dish + Unknown	
Mass, Evaporating Dish	
Mass, Unknown	
Mass Evaporating Dish + Salt (Product), after heating	
Mass Evaporating Dish + Salt (Product), after 2 nd heating	
Mass Salt (Product)	
<pre>% Salt (Product) Mass Salt (Product) / Mass Unknown x 100 =</pre>	
% Molar Mass Salt (Product)	
Closest from last week's 4 lab calculations	
Unknown Identification	
Calculations:	
% Salt (Product) = Mass Salt (Product), after heating / Mass Unknow	n Sampla v 100
% Sait (Floudit) - Mass Sait (Floudit), after fleating / Mass Officion	ii Sairipie X 100
Theoretical Yield:	
grams (R) 1 mol (R) /? mol (P) grams (P) Theoretical	
grams (R)	
(Divide) by Molar "Gatekeepers" (Multiply)	
Mass (R) from Balanced reaction Mass (P)	
% Yield = actual grams of Salt (Product) / "Theoretical " grams x 100	
% Yield = actual grams of Salt (Product) / "Theoretical " grams x 100	
% Yield = actual grams of Salt (Product) / "Theoretical " grams x 100	
% Yield = actual grams of Salt (Product) / "Theoretical " grams x 100	
% Yield = actual grams of Salt (Product) / "Theoretical " grams x 100	36

DUE 25-Mar

Nomenclature Names, Ions, Formulas

Complete Report Form pp. 109-114
1 form per lab group:
With names of only those who contributed on the form.

Name:
Section:

Report Form - Name, Ions, and Formula Activity

Name	Separated Ions	Formula
Sodium chloride	1 Na* + 1 Cl-	NaCl
Calcium chloride	1 Ca2+ + 2 Cl-	CaCl
Lithium carbonate		
Barium hydroxide		
	_K+_SO,2-	
	_NH ₄ * + CO ₃ *-	
		FeBr ₂
		Fe ₂ (SO ₄) ₃
Copper(II) nitrate		
Tin(IV) fluoride		
	Al2+ +SO ₃ 2-	
		Ca(NO ₂) ₂
		PbCl ₄
	Fe2+PO_45-	
		HgBr ₂
Calcium acetate		
Cobalt(III) sulfate		

Report Form - Name, Ions, and Formula Activity

09

Bonds: Molecular Shapes: Molecular Modeling

Chem 108 / Dr. Rusay

Names:	
	Molecular Modeling Report Form

These pages replace the Molecular Model Lab, pp. 97-103, of the Chemistry 108 Experiments Lab Manual. Complete the following modeling related exercises and include the names of all group members, who contributed to the work, on the form.

The first column lists formulas for a number of compounds. The bonding type is to be determined for these compounds using differences in their respective electronegativity values (refer to the in class information). The second column is for the electronegativity difference, the absolute value of the difference in electronegativity between the 2 different atoms in the compound, $|EN_2 - EN_1|$. The third column is for the average electronegativity of the two atoms, $(EN_1 + EN_2)/2$.

Compound	$ \mathrm{EN}_1 - \mathrm{EN}_2 $	$\frac{\mathrm{EN}_1 + \mathrm{EN}_2}{2}$	Bonding Type
HF		-	
HCl			
HBr			
HI			
CsF			
NaF			
CaO	http://ma	olview.or	n
ВаО	11ccp.//11c		9
NH ₃			
CH ₄			
CCl ₄			
H ₂ O	ad firet	8. 6000	ad nage

Have completed first & second pages checked so₂ before leaving lab.

Everyone is to complete their own form.

What's My Formula? Identification

Unknowns

$$BaCl_{2} \cdot 2H_{2}O$$

$$BaCl_{2} \cdot 2H_{2}O(s) \longrightarrow BaCl_{2}(s) + 2H_{2}O(g)$$

$$Unknown Sample$$

$$CaSO_{4} \cdot 2H_{2}O$$

$$CaSO_{4} \cdot 2H_{2}O(s) \longrightarrow CaSO_{4}(s) + 2H_{2}O(g)$$

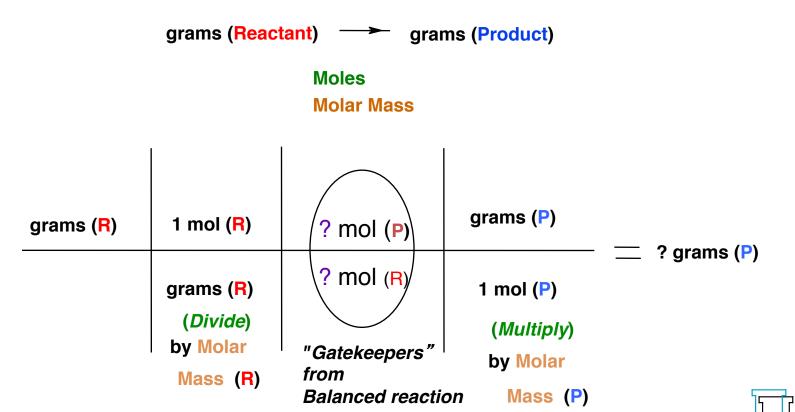
$$Unknown Sample$$

$$CaSO_{4} \cdot 2H_{2}O(g)$$

$$Salt$$

$$79.09\%$$

 $NaHCO_3$


$$\begin{array}{c} 2 \ NaHCO_3(s) \longrightarrow Na_2CO_3(s) + \ H_2O(g) + \ CO_2(g) \ 63.08\% \\ \text{Unknown Sample} & \text{Salt} \\ KHCO_3 & \end{array}$$

$$2 \ KHCO_3(s) \longrightarrow K_2CO_3(s) + H_2O(g) + CO_2(g)$$
 69.02% Unknown Sample Salt

Experimental Calculation:

% Salt = (Mass sample - Mass after heating) / Mass sample x 100 Comparison to Calculation(s) for a, b, c, d FROM last week:
% Salt = Molar Mass Salt Molar Mass Unknown Sample x 100

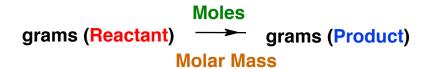
Theoretical Mass Calculations for any Reaction Reactants → Products

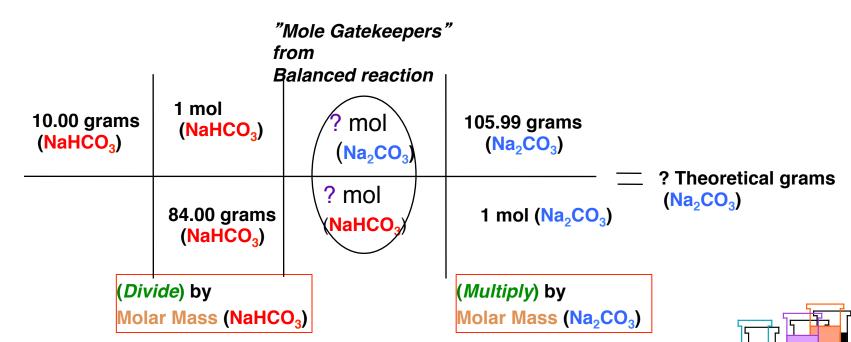
What's My Formula? % Yield (Example)

Heating 10.00 g of an unknown determined to be sodium bicarbonate and actually obtaining 5.98 g of sodium carbonate. What is the Percent Yield?

First calculate the **theoretical yield**. (Adaptation of your calculations last week.)

It considers in the calculation that everything went perfectly, and is based on the assumption of 100% accuracy.

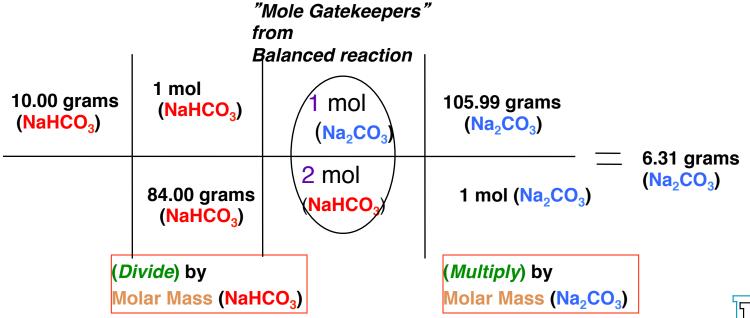

Yield is actual; based on reality.


$$2 NaHCO_3(s) \longrightarrow Na_2CO_3(s) + H_2O(g) + CO_2(g)$$

Reactant = 10.00 g Product = ? g (Theoretical) Molar Mass = 84.00 g/mol Molar Mass = 105.99 g/mol

 $2 \bmod NaHCO_3(s) : 1 \bmod Na_2CO_3(s)$

Theoretical Mass Calculations Reactants ←→ Products



$$2 NaHCO3(s) \longrightarrow Na2CO3(s) + H2O(g) + CO2(g)$$

Theoretical Mass Calculations Reactants → Products

$$2 NaHCO_3(s) \longrightarrow Na_2CO_3(s) + H_2O(g) + CO_2(g)$$

What's My Formula?

"% Yield" is used to measure the efficiency (similar to "accuracy") of any reaction in yielding "product(s)" (on the right of an equation) versus the calculated (theoretical) amount of the product based on the amount of "reactant(s)" (from the left of the equation) using the relative number of moles of each in a balanced chemical equation.

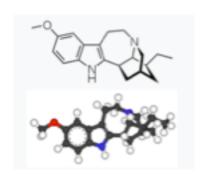
% Yield = actual grams of product / theoretical (calculated) grams of product x 100

For example, heating 10.00 g of sodium bicarbonate and actually obtaining 5.98 g of sodium carbonate. After calculating the theoretical yield:

- $2 NaHCO₃(s) \longrightarrow Na₂CO₃(s) + H₂O(g) + CO₂(g)$
- $2 \bmod NaHCO_3(s) : 1 \bmod Na_2CO_3(s)$

Reactant = 10.00 g Product = 6.31 g (Theoretical) Molar Mass = 84.00 g/mol Molar Mass = 105.99 g/mol

% Yield = 5.98 g (actual) / 6.31g (theoretical) x 100 = **94.6%**


QUESTION

♠ A synthetic reaction produced 2.45g of Ibogaine, C₂₀H₂₆N₂O, a natural product with strong promise in treating heroin addiction, the calculated theoretical yield was 3.05g, what is the % yield?

A) 19.7% B) 39.4% C) 80.3% D) 160.6%

C₂₀H₂₆N₂O (Ibogaine) Tabernanthe iboga

Post Lab: Molar Comparisons of Analgesics $[eg. C_0H_8O_4]$

Dosage Calculations: (mmol/dose vs. grams/dose)

Which analgesic has the most biologically active ingredient based on millimoles per dose (mmol/dose)?

5.0 g of the active ingredient would produce the following number of doses:

Caffeic acid			
Formula	Formula	Doses	mmol/dose
Aspirincular weight	C ₉ H ₈ O ₂ 0.15742 u	15.0	1.8 mmol/dose
Ibuprofenors	$C_{13}H_{18}O_{2}$	25.0	?
Naproxen Sodium	$C_{14}H_{13}O_{3}Na$	22.7	?
Acetaminophen •	$C_8H_9NO_2$	5.0	?
c 12.0107 u × 9	60.001 %	5	

Molar Mass Aspirin = 180.1 g/mol 5.0 g / 180.1 g/mol = 0.028 mol/15 doses = 1.8 mmol/dose

Molar Comparisons of Analgesics Calculate Moles: Doses (mmol/dose)

Post Lab:

Must submit Individually From calendar link

DUE Next Lab

