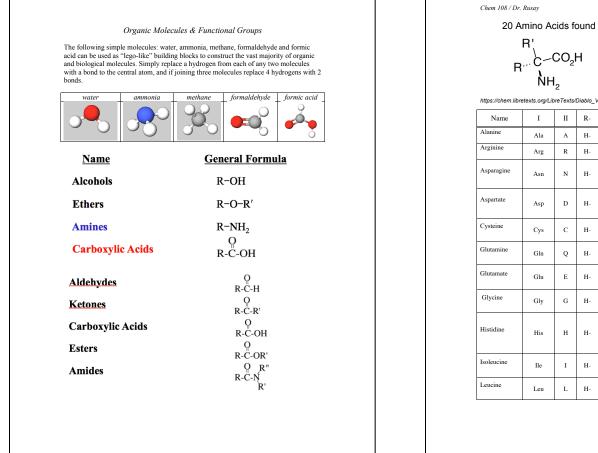

Organic Molecules Functional Group Overview

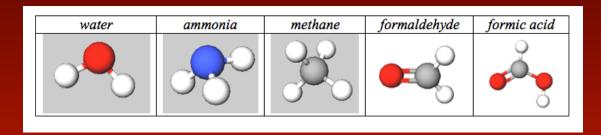
Dr. Ron Rusay



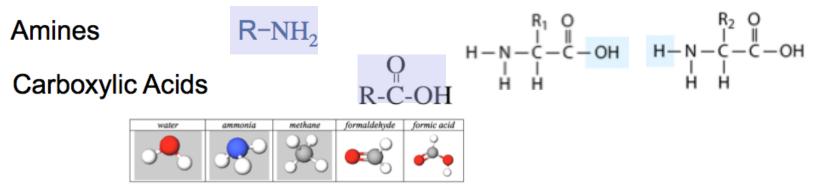
Except where otherwise noted, content on this site is licensed under a Creative Commons Attribution 4.0 International license.

Elemental building blocks for all organic molecules

Functional Groups & Amino Acids


20 Amino Acids found in Proteins of Living Organisms

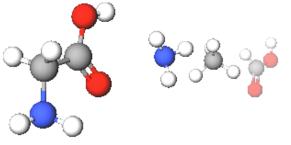
https://chem.libretexts.org/LibreTexts/Diablo_Valley_College/DVC_Chem_106%3A_Rusay/Amino_Acids


Name	Ι	П	R-	R'-	Rasmol Color	Function & Class	
Alanine	Ala	А	H-	CH3-	dark gray	Aliphatic Hydrophobic	
Arginine	Arg	R	H-	-CH2CH2CH2NHCNH2	blue	Basic Hydrophilic	
Asparagine	Asn	N	H-	O -CH ₂ CNH ₂	cyan	Amide Highly Hydrophilic	
Aspartate	Asp	D	H-	О -СН ₂ СОН	bright red	Acidic Hydrophilic	
Cysteine	Cys	с	H-	-CH ₂ SH	yellow	Sulphur Containing Hydrophobic	
Glutamine	Gln	Q	H-	-CH2CH2CNH2	cyan	Amide Highly Hydrophilic	
Glutamate	Glu	Е	H-	О -СН ₂ СН ₂ СОН	bright red	Acidic Hydrophilio	
Glycine	Gly	G	H-	H-	light gray	Aliphatic Hydrophobi	
Histidine	His	Н	H-	H N CH ₂ .	pale blue	Basic Hydrophilio	
Isoleucine	Ile	Ι	H-	CH ₃ I -CHCH ₂ CH ₃	green	Aliphatic Hydrophobi	
Leucine	Leu	L	H-	CH ₃ -CH ₂ CHCH ₃	green	Aliphatic Hydrophobi	

Organic Molecules

Shapes, Functions & Structural Analogies Water, Ammonia, Methane

Amino acids: two functions, an acid & a base, in the same molecule



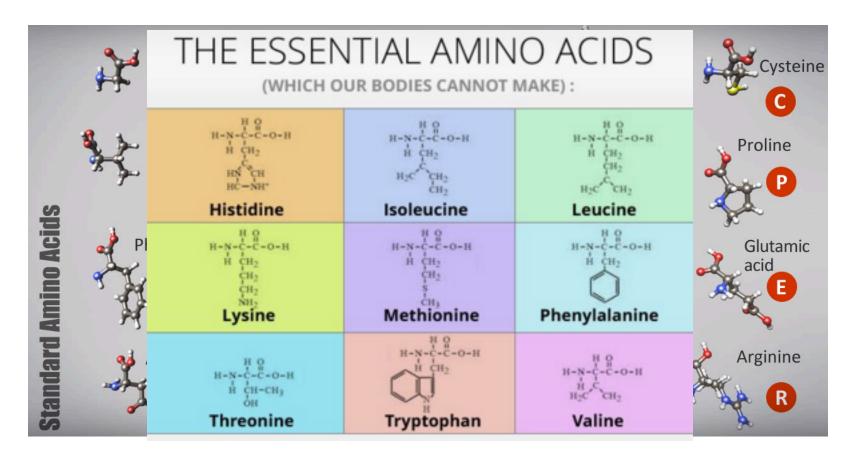
	Functions	
	Alcohol	R-OH
	Ether	R-O-R'
Х	Amine	R-NH ₂
	Aldehyde	O R-C-H
	Ketone	R-C-R'
Х	Carboxylic Acid	O R-C-OH
	Ester	
	Amide	R-C-OK O R" R-C-Ń

https://www.youtube.com/watch?v=JQZQiEdOPJY

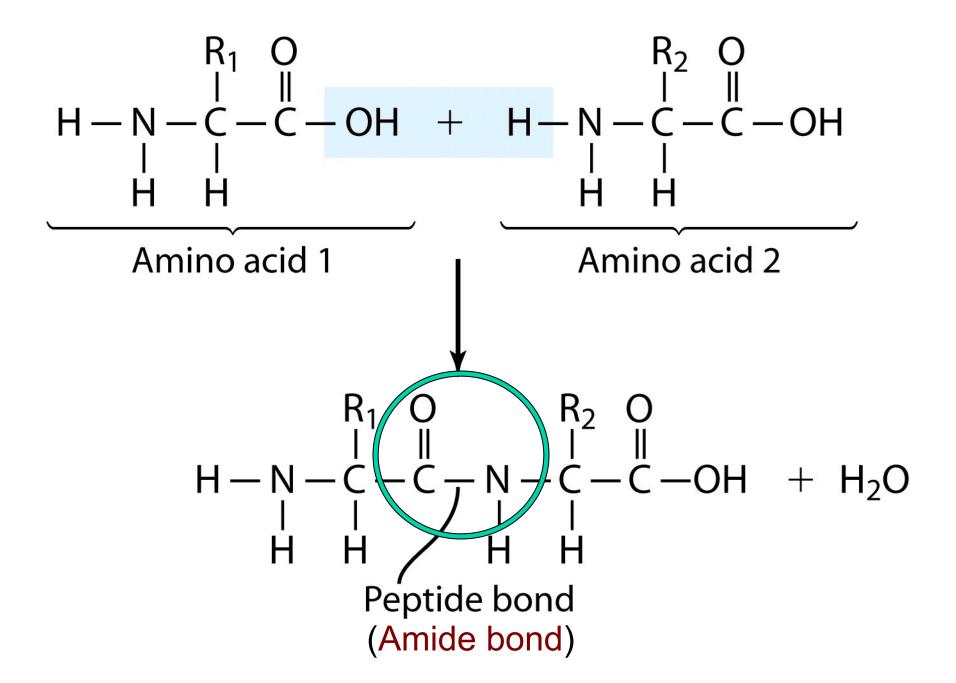
Amino Acids Legos of Chemical Biology

Amino acids containing carbon, hydrogen, oxygen, and nitrogen, which resemble the following shapes & structural components

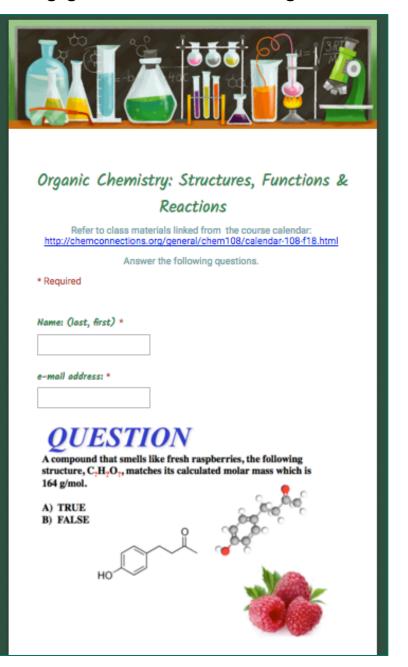
•20 different amino acids are encoded in humans' genetic code, which is archived in DNA.


•Hundreds of amino acids link together with amide (peptide) bonds to form proteins, which provide the machinery and molecular structures for the chemistry of life.

•There are less than 20,000 total proteins produced from humans' entire genome, each coded by a specific gene in DNA's ~3 billion genetic bases.


http://chem.libretexts.org/LibreTexts/Diablo_Valley_College/DVC_Chem_106%3A_Rusay/ Amino_Acids

Amino Acids Legos of Chemical Biology


All amino acids contain C, H, O, and N; two, C & M. also have sulfur.

http://chem.libretexts.org/LibreTexts/Diablo_Valley_College/DVC_Chem_106%3A_Rusay/ Amino_Acids

http://chemconnections.org/general/chem108/Organic%20Chemistry%20Guide.html

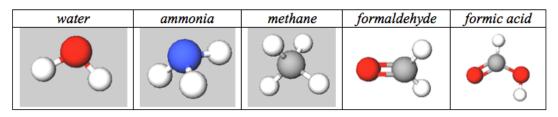
Organic Molecules *Common Functional Groups*

Name

General Formula

Alcohols

Ethers


Amines

R'- or Rrepresents any generic carbon atom bonded in the functional group R-OH

R-O-R'

R-NH₂ O R-C-OH

Carboxylic Acids

Organic Molecules *Common Functional Groups*

Name

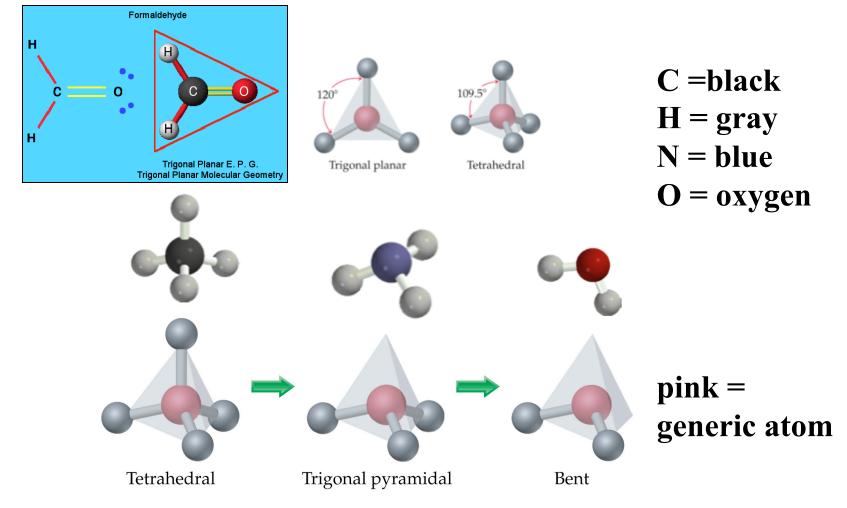
General Formula

Aldehydes

Ketones

Carboxylic Acids

Esters


Amides

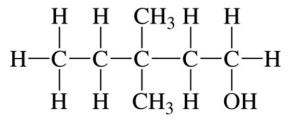
R'- or Rrepresents any generic carbon atom bonded in the functional group

R-C-H R-C-R' R-C-OH R-C-OR' R-C

Molecular Models for C, H, N, O

Fundamental repeating shapes found in every biological molecule

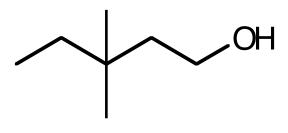
Representing Organic Molecules



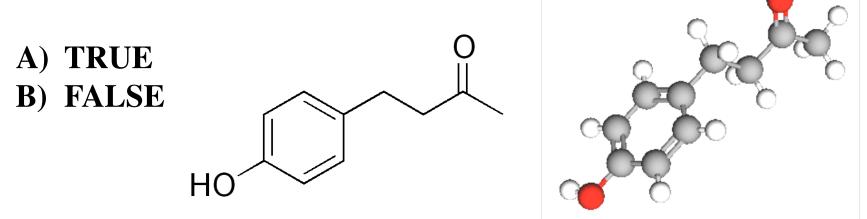
http://chemconnections.org/general/movies/Representations.MOV

Representing Organic Molecules Common Formulas & Drawings

Molecular formula: C₇H₁₆O


Empirical Formula: C₇H₁₆O

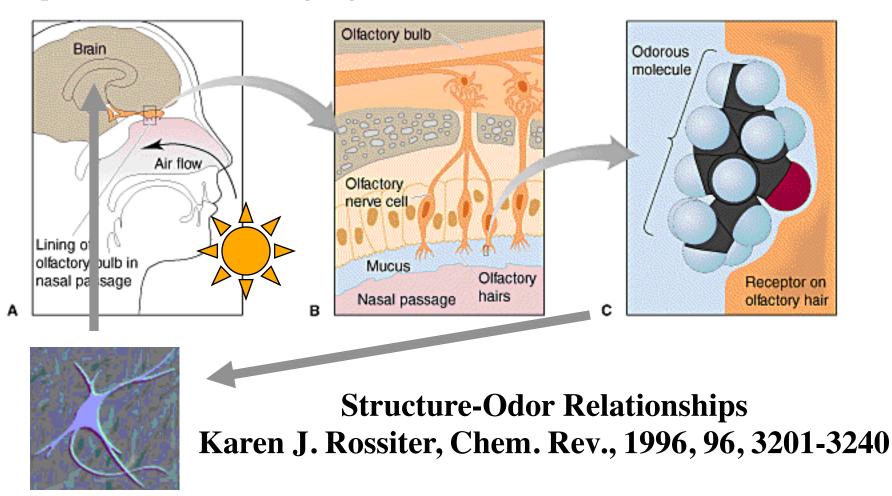
Condensed Structure: CH₃CH₂C(CH₃)₂CH₂CH₂OH

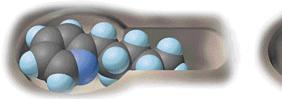

or $CH_3CH_2CCH_2CH_2OH$ CH_3

Bond-Line Structure:

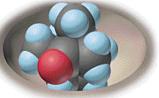
A compound that smells like fresh raspberries, the following structure, C₂H₂O₂, matches its calculated molar mass which is 164 g/mol.

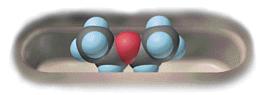
Organic Chemistry: Structures, Functions & Reactions


http://chemconnections.org/general/chem108/Organic %20Chemistry%20Guide.html


	n(s) in the molecule	HO	
	Alcohol	R-OH	
	Ether	R-O-R'	
	Amine	R-NH ₂	
	Aldehyde	O R-C-H	
	Ketone	ок-С-п R-C-R'	
	Carboxylic Acid	о О R-C-OH	
	Ester	$\mathbf{P} \stackrel{H}{\subset} \mathbf{O} \mathbf{P}^{I}$	ξ "
	Amide	R-C-N	
		R	

Detecting stuff we cannot see: the Sense of Smell Models, Theories & Interactions


http://chemconnections.org/organic/chem226/Labs/Smell/smell-links.html


Historical view of a few smell receptors.

Floral

Camphor-like

4 October 2004

Ethereal

The Nobel Assembly at Karolinska Institutet has today decided to award

The Nobel Prize in Physiology or Medicine for 2004

jointly to

Richard Axel and Linda B. Buck

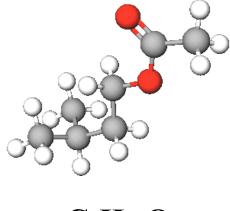
for their discoveries of

"odorant receptors and the organization of the olfactory system"

http://chemconnections.org/organic/chem226/Labs/Smell/ChemComm.html

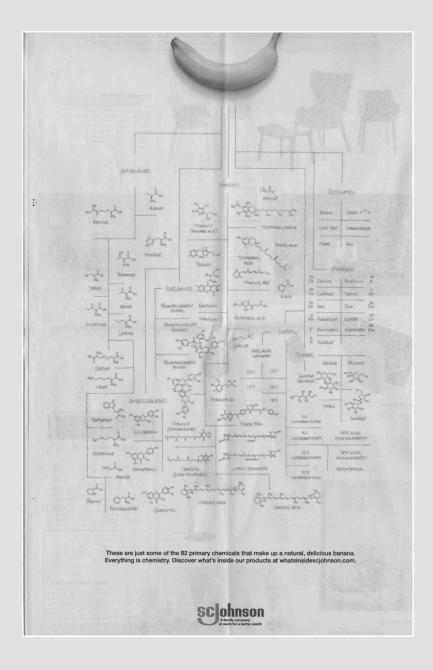
Organic Functions & Smell Receptors.

Organic Chemistry

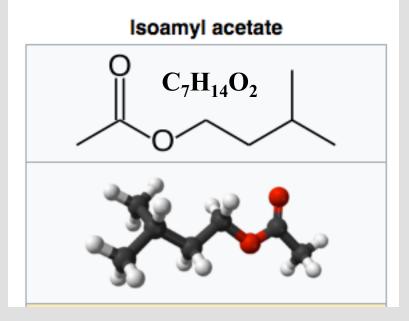

Table of organic compounds and their smells

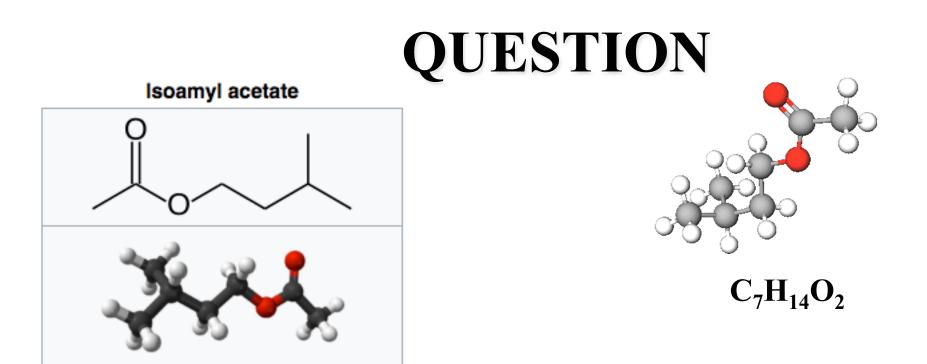
	ALK	ANES	ALKENES	ALCO	HOLS		ALDE	HYDES		KETC	DNES	CARBOXY	LIC ACIDS		HALOALKANE	s	THIOLS	AMI	NES	NITRILES	LACTONES
	-ane	cyclo -ane	-ene	-anol	-an-2-ol	-anal	2-methyl -anal	3-(4-r-butylphenyl) -anal	-enal	-an-2-one	methyl -an-2-one	-anoic acid	-enoic acid	chloro -ane	bromo -ane	iodo -ane	-anethiol	-anamine	diamino -ane	-anenitrile	-anolide
meth- 1 carbon	none	doesn't exist	carbene is too unstable to smell	ABSOLUT	doesn't exist	CANGER FORMADE HYDE	doesn't exist	doesn't exist	doesn't exist	doesn't exist	doesn't exist	PUNGENT & PENETRATING	doesn't exist	TOXIC & MILDLY SWEET		SWEET, ACRID	<u>k</u> 😶		?		doesn't exist
eth- 2 carbons	none	doesn't exist	•	ABSOLUT VODKA	doesn't exist	FRUITY, ETHEREAL	doesn't exist	doesn't exist	doesn't exist	doesn't exist	doesn't exist	VINEGAR	doesn't exist		SWEET, ACRID	ETHEREAL	SKUNK			ETHEREAL	doesn't exist
prop- 3 carbons	none		<u>.</u>	ABSOLUT VODKA		IRRITATING GREEN COFFEE	WET	ATTRACTS	BURNED GREASE	NAIL VARNISH REMOVER	doesn't exist	SLIGHTLY	SHARP		SWEET	SHARP, UNIQUE	1			ETHEREAL	none
but- 4 carbons	none		0		Stand S.		S.	LILY		BUTTERSCOTCH	LIKE NAIL VARNISH REMOVER	RANCID BUTTER	BROWN	SHARP	PLEASANT, SWEET	SHARP, UNIQUE	butanethial skunk skunk skunk butan-bethal natural gas odoard		DEAD		G
pent- 5 carbons	STARTING FLUID		<u> </u>		(S)- and (R)- enantiomers	PUNGENT NUTS & CHOCOLATE	FRESHLY CUT GRASS	?	۲	a 🕼	MINT (4-methyl-)	DISGUSTING	1	MILD	PLEASANT, SWEET		ROASTED		DEAD ANIMALS	se	HERBAL
hex- 6 carbons	STA <mark>RT</mark> ING FLUID	SWEET	<u> </u>	FRESHLY CUT GRASS	-	FRESHLY CUT GRASS	FRESHLY CUT GRASS	?	J	ATTRACTS	(3-methyle)	GOATS	ARMPITS (WHEN 3- METHYLATED)		SLIGHTLY SWEET	?	BURNED		ROTTING FISH	S.	<u>_</u>
benzene different naming system is used	n/a	n/a	Benzenë	SICKENINGLY SWEET AND TARRY Phenol	doesn't exist	SP.	**	?	doesn't exist	doesn't exist	Acetophenone	BALSAMIC	doesn't exist	SP.	AROMATIC		<u> </u>	Aniline	TOXIC, AROMATIC	Benzonitrile	doesn't exist
hept- 7 carbons		•	<u>.</u>	FRESHLY CUT GRASS	(S)- and (R)- enantiomers	STRONG, FRUITY COGNAC	(2.6-dimethyl- heptanal)	?	ALMOND		(6-methyl-)	RANCID	ADWRITS (WHEN 3- METHYLATED)	none		none				S.	
oct- 8 carbons	PETRO	•		PENETRATING, SWEET	(S)- and (R)- enantiomers	STRONG, CITRUS- LIKE	?	?	20	-2-one petrol -3-one herb butter	?		ARMPITS	none		SEAWEED				S.	
non- 9 carbons	DIESEL		0	CITRUS	₹	ATTRACTS	e	?	OLD PEOPLE	MILK	?	RANCID	ARMPITS	none	none	none					
dec- 10 carbons	JET FUEL	•	<u>.</u>	FLOWERS	?	BUCKWHEAT		?	ATORA	?	?	RA	ARMPITS	none	none	none	OBNOXIOUS			se	
undec- 11 carbons	ALSO ANT "PANIC" PHERONONE	?	0	FLOWERS	?	MAKES SPERM UNABLE TO FIND THE EGG	KUMQUATS	?	Å	ALGERIAN OIL OF RUE	?	WAXY	PUNGENT & PENETRATING	UNIQUE & UNPLEASANT	none	MOUSE					
dodec- 12 carbons		MUSTY,	0	FLOWERS	?	Ó	?	?	۳. ۵ <mark>0</mark>	?	?	BAY OIL	FATTY	UNIQUE & UNPLEASANT	none	?	OBNOXIOUS			S.	
tridec- 13 carbons	STINKBUG	UNIQUE; FOUND IN ROSES			?	GRAPEFRUIT	ROASTED	?	?	WAXY	?		?	UNIQUE & UNPLEASANT	none	?			none		ANGELICA ROOT-
tetradec- 14 carbons	KAPOK BUSH FLOWERS	none			?	<u>e</u>	?	?	?	?	?	WAX & NUTMEG	?		none	?			none	se	CEDAR
pentadec- 15 carbons	TAMARIND (ANT-CALMING PHEROMONE)	?	-		?	FRESH	?	?	CORIANDER	CELERY	?	BIOMARKER FOR DAIRY CONSUMPTION (No smell)	?	UNIQUE & UNPLEASANT	none	?			none	Δ	MUSK

Version 1.2 Produced by James at jameskennedymonash.wordpress.com. Visit website for more infographics. Free to use!


One molecule, one function: One Smell Receptor

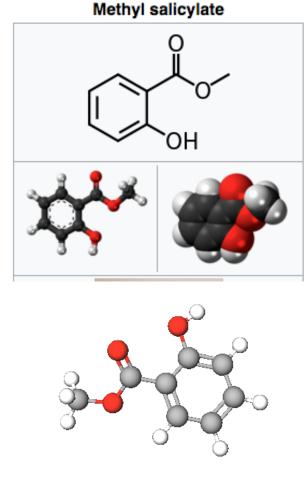
Isoamyl acetate, also known as isopentyl acetate, is formed from isoamyl alcohol and acetic acid. It is a colorless liquid that is only slightly soluble in water, but very soluble in most organic solvents. Isoamyl acetate has a strong odor which is also described as similar to both banana and pear.[3] Banana oil may be either pure isoamyl acetate, or flavorings that are mixtures of isoamyl acetate, amyl acetate, and other flavors.

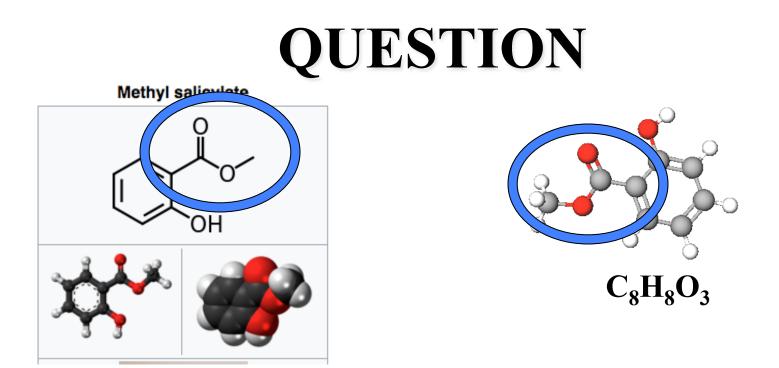



Isoamyl acetate

 $C_7H_{14}O_2$

One molecule among 82 primary chemicals found in bananas:




The function in isoamyl acetate's structure is a(n): A.Alcohol B.Aldehyde C.Ketone D.Ester E.Carboxylic Acid

One molecule, two functions: One Smell Receptor

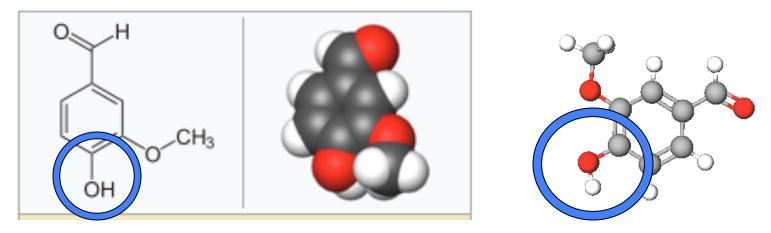
Methyl salicylate (oil of wintergreen or wintergreen oil) is naturally produced by many species of plants, particularly wintergreens. It is also synthetically produced, used as a fragrance, in foods and beverages, and in liniments.

C₈H₈O₃

One of the functions, an ester, is circled. What is the other function?: A.Alcohol B.Ether C.Ketone D.Aldehyde E.Carboxylic Acid

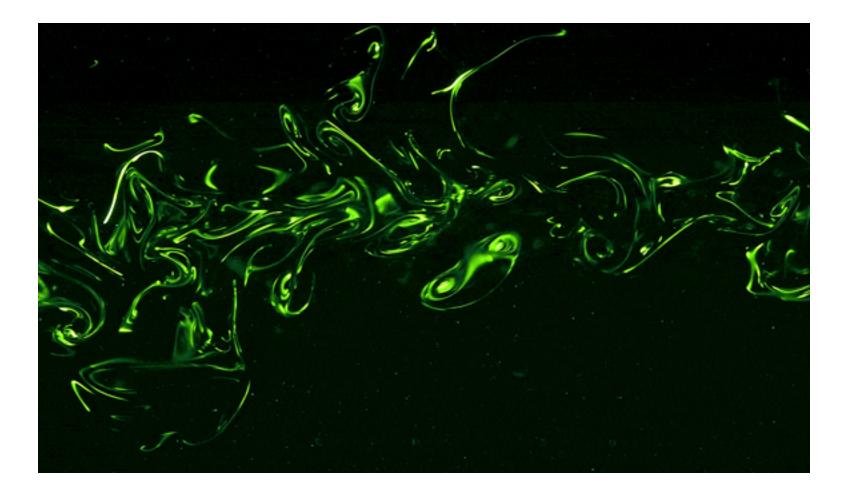
One molecule, three functions: One Smell Receptor

An extract of the cured, full-grown, unripe fruit of an orchid produces a popular flavoring. The natural extract sells for \sim \$1500/kg versus \sim \$20/kg for the synthetic version. The structure of the compound that is responsible for the smell/flavor is shown to the right. The Guinness Book of World Records once listed this compound as having the lowest smell detection limit of all chemicals (2 x 10⁻¹¹ g per 1,000 cm^3 of air).

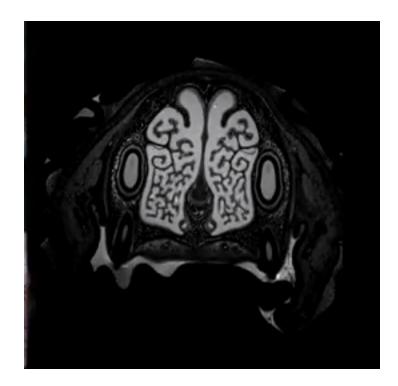


Bonus:

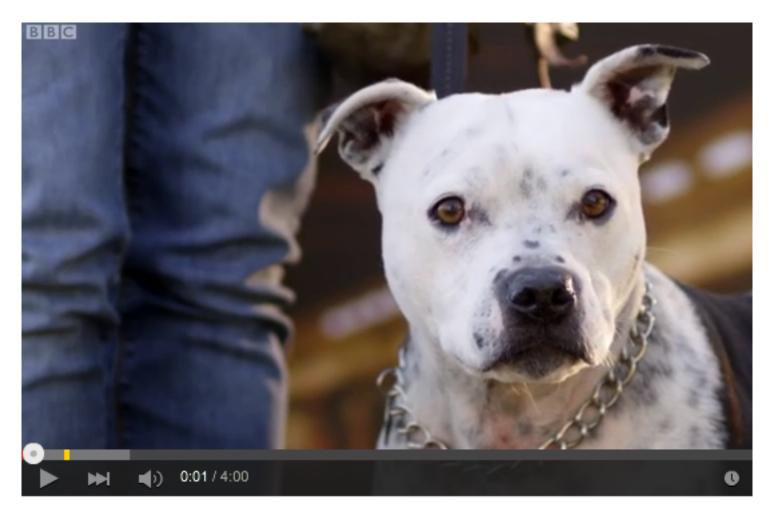
The space (volume) of the Oakland Coliseum Arena, aka Oracle Arena, is approximately 90,000,000 ft³. If 1.00g of the compound were released at center court, and was completely and evenly dispersed throughout the building, would you smell it sitting in sec. 204, row H, seat 121? Show your calculation. (1 ft³ = 0.0283 m³)


QUESTION

Vanillin


One of the functions, an alcohol, is circled. What are the other two functions?: A.Aldehyde + Ketone B.Carboxylic Acid + Ester C.Ketone + Ether D.Aldehyde + Ether E.Carboxylic Acid + Aldehyde

What a smell looks like


https://www.youtube.com/watch?v=58U52lDTuvk&list=PLgawtcOBBjr9I-NDoUX-HmTQr_VN465G2&index=3

Inside the extraordinary nose of a search-and-rescue dog

https://www.youtube.com/watch?v=FLH36ML8IEU

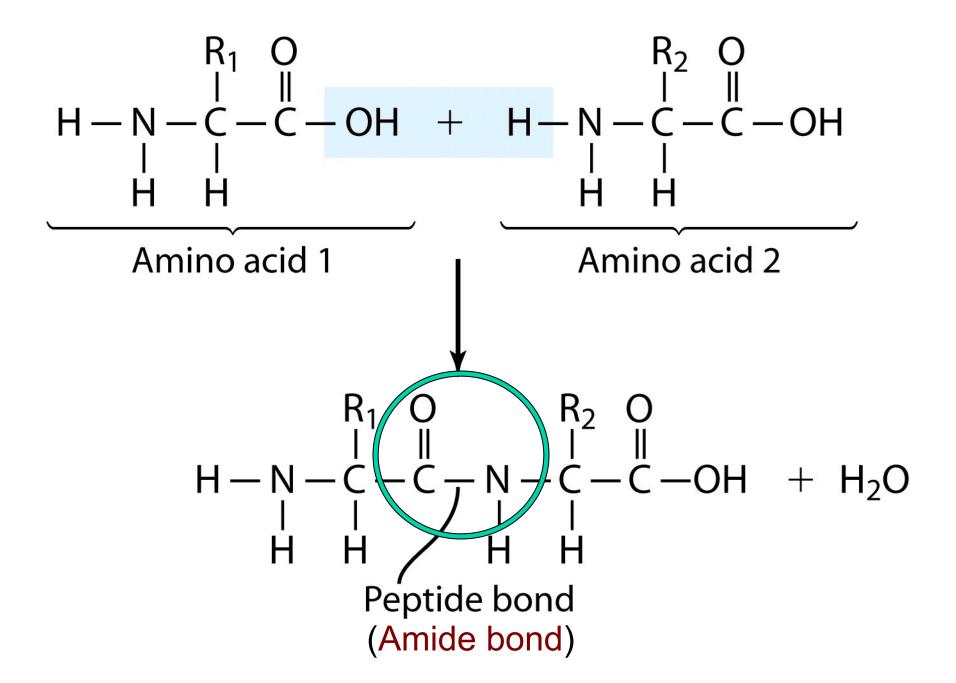
Dogs Can Smell Cancer - Secret Life of Dogs - BBC

https://www.youtube.com/watch?v=e0UK6kkS0_M

Organic Functional Group Sudoku Puzzle adapted from Crute, Thomas D.; Myers, Stephanie A., J. Chem. Educ. 2007, 84, 612
The precursor of the sadoku puzzle was first published in the United States in 1979 by Howard Garns, a retired ar- chitect and freelance puzzle constructor. In April 1984, the puzzle was introduced in Japan and the name "suchos" was assigned to the puzzle. "Souji wa dokushin ni kagim" may be translated as "the numbers musz be single" or "the numbers musz occur only once". Later the name was abbreviated to sudoka (pronounced SUE-dough-coor "su" means numbes, "doku" means single). In April 2005, The New York Por pab- lished sudoko puzzles as a regular feature and by July 2005, the puzzle surged in popularity all over the country (1, 2).

The following Sudoku puzzle deals with the names and generic structures of organic functional groups found in organic molecules. They do not deal directly with numbers as

	R-COOH					R-CONH ₂	R-NH ₂	R-CO-R'
R-NH ₂	R-CI	R-CO-R′	R-OH			R-0-R′		
R-O-R'					R-COO-R'		R-Cl	R-OH
R-CO-R'								
R-COO-R	R-OH		R-O-R′	R-NH ₂	R-CO-R'		R-COOH	R-CONH ₂
								R-O-R′
R-CONH ₂	R-CO-R'		R-COOH					R-Cl
		R-NH ₂			R-CI	R-OH	R-CONH ₂	R-COO-R′
R-CI	R-COO-R'	R-CHO					R-0-R'	

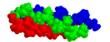

Organic Molecules Functional Groups

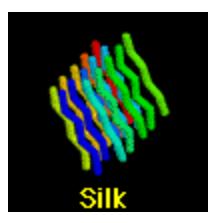
Proteins Amines, Carboxylic Acids Amides (Peptides)

Physiological reactions (metabolism) of one gram of protein produces 4 to 5 Calories (kcal), which is enough energy to raise the water in your body about 1 °C.

Except where otherwise noted, content on this site is licensed under a Creative Commons Attribution 4.0 International license.

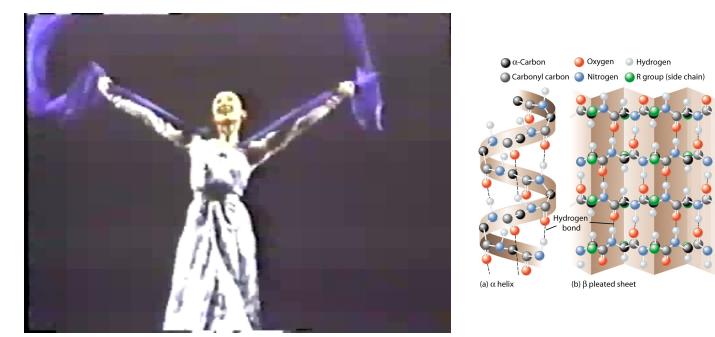
Proteins: Macromolecular Biopolymers


- Structural proteins: Collagen
 Connectin proteins, β MW of 2.1 million g/mol; length
 = 1000 nm; can stretch to 3000 nm.
- Mechanical (Contractile) proteins: Actin, Myosin
- Transport proteins: Hemoglobin
- **Enzymes:** *Glutamine synthetase* 12 subunits of 468 residues each; total mol. wt. = 600,000 daltons
- Regulatory proteins: *Insulin* α -alpha chain of 21 residues, β beta chain of 30 residues; total mol. wt. of 5,733 amu
- Specialized proteins: Antifreeze in fish

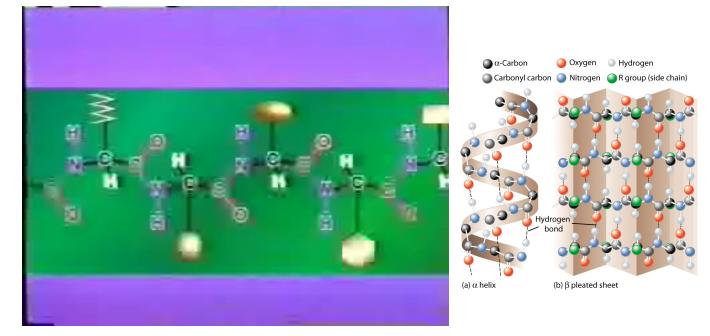

A gene was first defined as: one piece of DNA that codes for one protein. (The definition is being expanded beyond proteins to include certain types of RNA.)

Proteins: Macromolecular Biopolymers

Examples of Structural Proteins

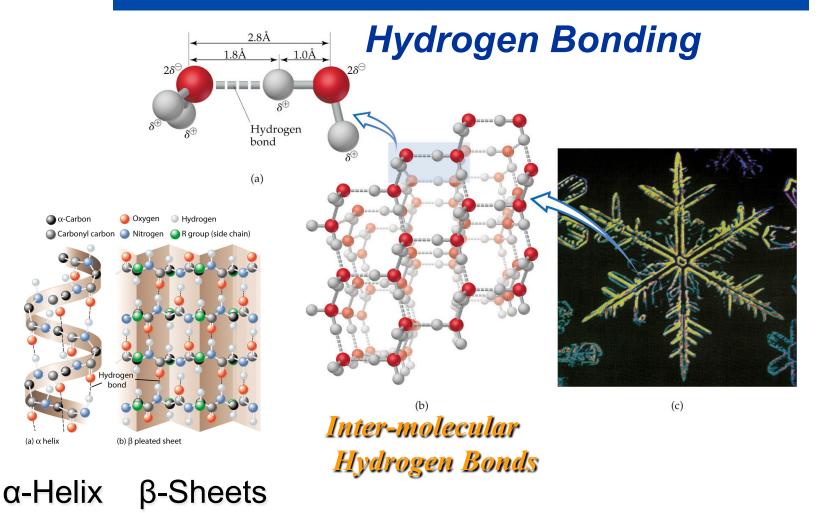

Collagen: connective tissue

Structural Proteins: Silk



β-Sheets

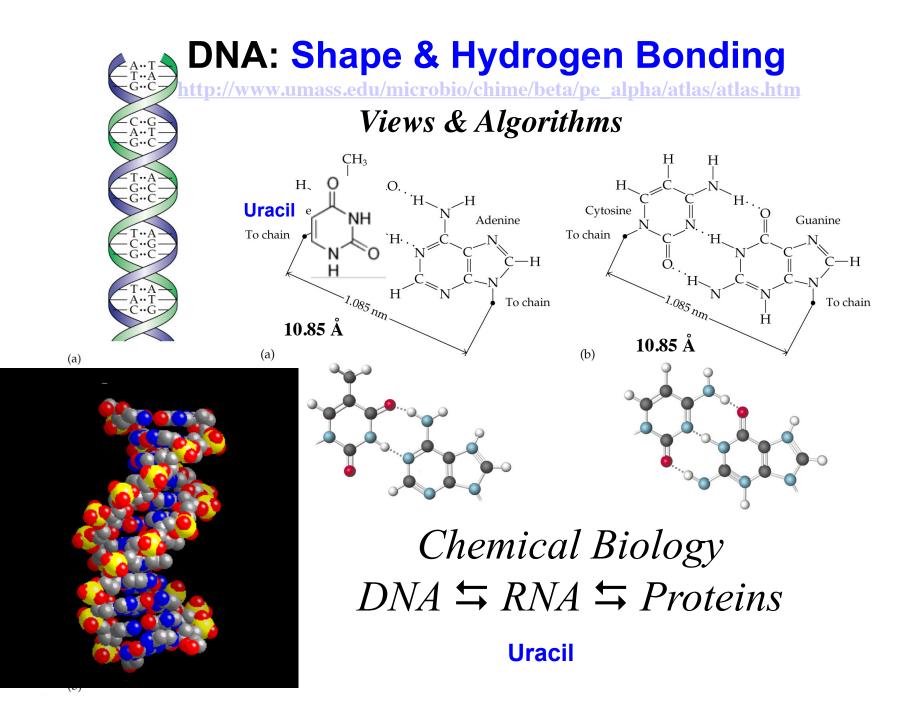
http://chemconnections.org/general/movies/proteins-silk-2.mov

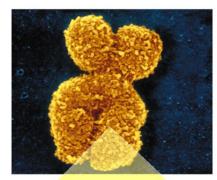

Structural Proteins:

α-Helix *Curly Haír*

http://chemconnections.org/general/movies/protein-hair-2.mov *Annenberg World of Chemistry* #23 Proteins : <u>http://www.learner.org/resources/series61.html</u>

Intra- & Inter-molecular


Intra-molecular


Hydrogen Bonds

http://chemconnections.org/general/ movies/ice-structure.MOV

http://chemconnections.org/general/movies/HydrogenBonding.MOV

Chromosome

One nucleotide

DNA double helix

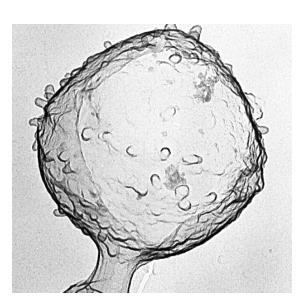
Gene on a single strand of DNA

GGATATCCAAGC Nucleotide sequence

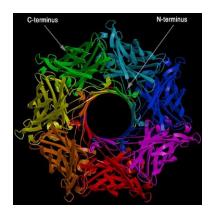
OH

https://www.youtube.com/watch?v=gG7uCskUOrA

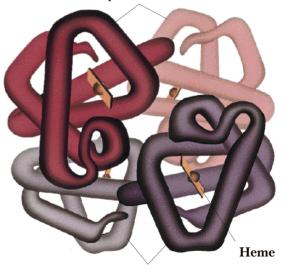
Chemical Biology $DNA \leftrightarrows RNA \leftrightarrows Proteins$

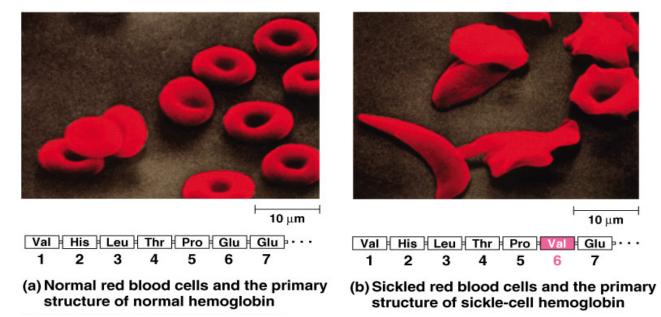

https://www.youtube.com/watch?v=X_tYrnv_o6A

Mechanical proteins: Pathogens & Cell Invasion

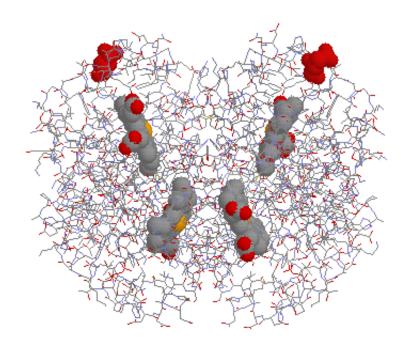

myosin-actin: muscle

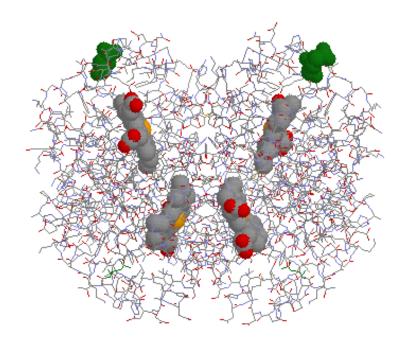
Michael Ferenczi




Streptococcus pyogenes 96,000 x Vincent A. Fischetti Ph.D., Rockefeller University http://www.chm.bris.ac.uk/motm/motm.htm

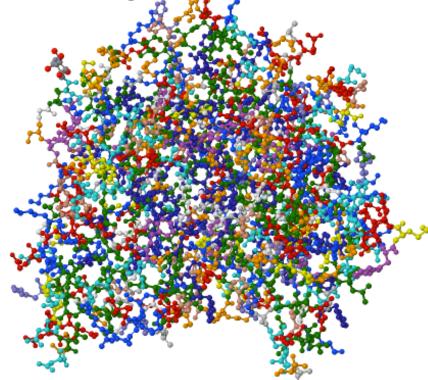
Transport Proteins: Hemoglobin & Oxygen


 β -Chains



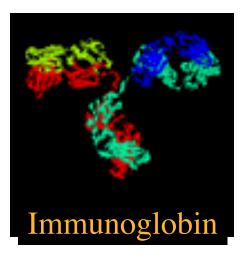
 α -Chains

Normal hemoglobin vs sickle cell hemoglobin


Valine replaces Glutamate

http://chemconnections.org/Presentations/Columbia/slide8-3.html

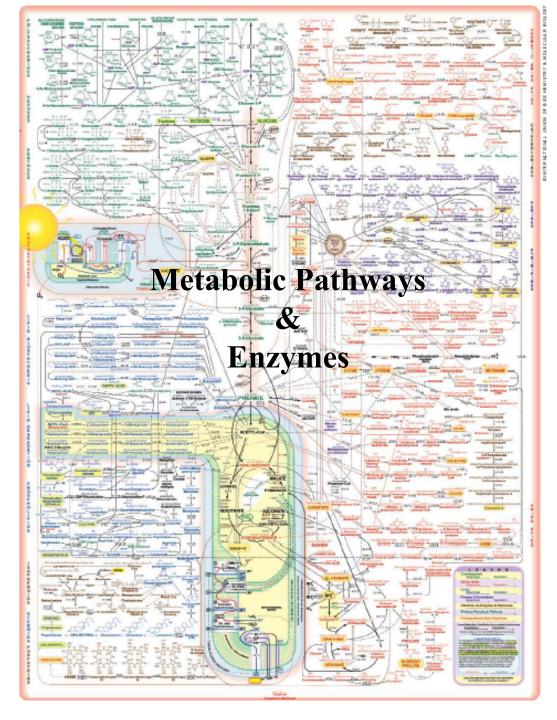
Firefox to listen


Catalytic Proteins: Enzymes Acetylcholinesterase (ACE)

ACE, an enzyme, which catalyzes a key reaction in a repetitive biochemical cycle that is crucial to neurological and physiological functions in humans.... and insects among others.

4,496 atoms; 4,404 bonds 574 amino acid residues

Protective Proteins



Antibodies Prolific Immunoproteins

Human's total ~ 100 x 10⁶ immunoproteins

Combinatorial syntheses from libraries of 250, 10, and 6 possible contributors

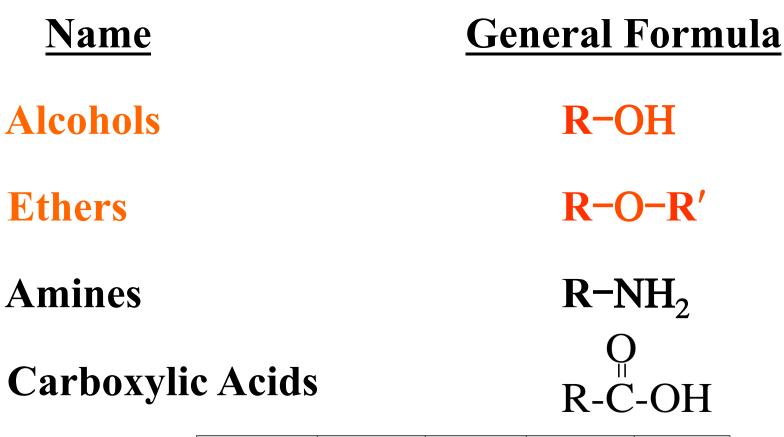
Human Genome ~20,000 proteins

Organic Functional Group Sudoku Puzzle adapted from Crute, Thomas D.; Myers, Stephanie A., J. Chem. Educ. 2007, 84, 612
The precursor of the sadoku puzzle was first published in the United States in 1979 by Howard Garns, a retired ar- chitect and freelance puzzle constructor. In April 1984, the puzzle was introduced in Japan and the name "suchos" was assigned to the puzzle. "Souji wa dokushin ni kagim" may be translated as "the numbers musz be single" or "the numbers musz occur only once". Later the name was abbreviated to sudoka (pronounced SUE-dough-coor "su" means numbes, "doku" means single). In April 2005, The New York Por pab- lished sudoko puzzles as a regular feature and by July 2005, the puzzle surged in popularity all over the country (1, 2).

The following Sudoku puzzle deals with the names and generic structures of organic functional groups found in organic molecules. They do not deal directly with numbers as

	R-COOH					R-CONH ₂	R-NH ₂	R-CO-R'
R-NH ₂	R-CI	R-CO-R′	R-OH			R-0-R′		
R-O-R'					R-COO-R'		R-Cl	R-OH
R-CO-R'								
R-COO-R	R-OH		R-O-R′	R-NH ₂	R-CO-R'		R-COOH	R-CONH ₂
								R-O-R′
R-CONH ₂	R-CO-R'		R-COOH					R-Cl
		R-NH ₂			R-CI	R-OH	R-CONH ₂	R-COO-R′
R-CI	R-COO-R'	R-CHO					R-0-R'	

Organic Molecules Functional Groups


alcohols, ethers, aldehydes, ketones Carbohydrates / Saccharides / Sugars

Physiological reactions (metabolism) of one gram of carbohydrate produces about the same energy as 1 gram of protein: 4 to 5 Calories (kcal); enough to raise the water in your body about 1 °C.

Except where otherwise noted, content on this site is licensed under a Creative Commons Attribution 4.0 International license

Sugars (Carbohydrates) Common Functional Groups

water	ammonia	methane	formaldehyde	formic acid
				• ••••

Sugars (Carbohydrates)

Common Functional Groups

Name

General Formula

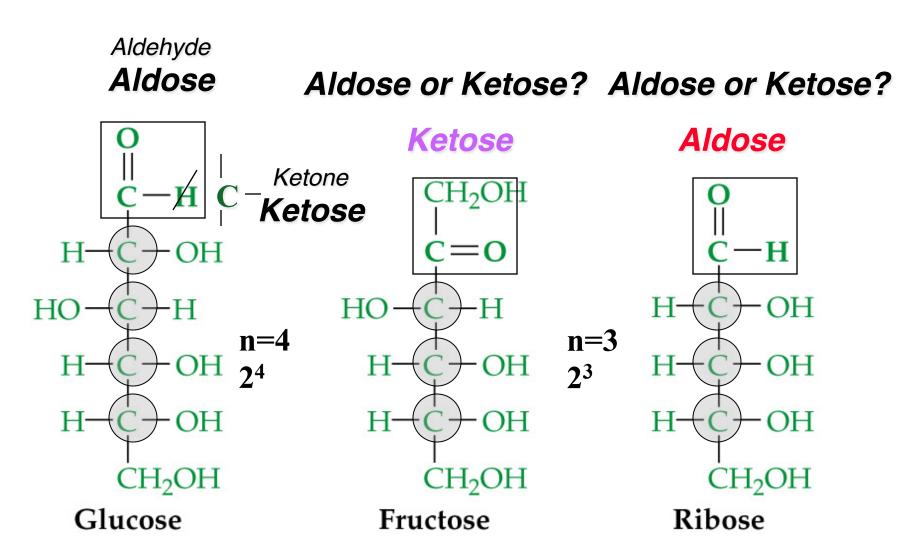
Aldehydes

Ketones

Carboxylic Acids

Esters

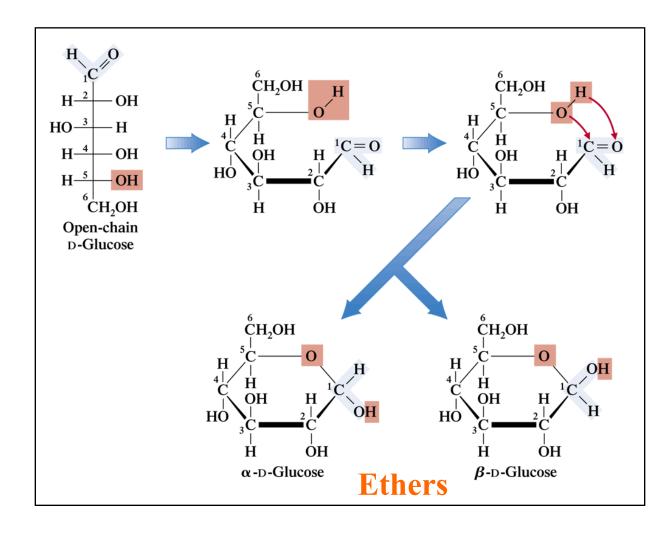
Amides


R-C-H R-C-OH R-C-OR' OR" R-C-Ń

Carbohydrate ("-ose") Formation Photosynthesis

Light + chlorophyll an + two greenhouse gases, which provide oxygen & sugars $n CO_2 + n H_2O \longrightarrow C_n (H_2O)_n + n O_2$

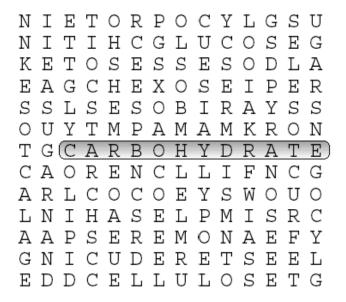
- ♦ Empirical formula = CH₂O
- Monosaccharides (simple sugars)
- ◆ C₅: pent-oses *rib-ose*
- ◆ C₆: hex-oses fruct-ose, gluc-ose


Can be either an ald-ose (aldehyde + alcohols) or ket-ose (ketone + alcohols)

There are 2ⁿ possible stereoisomers, where n = the number of chiral atoms (alcohols). Glucose? Fructose? Ribose?

Plus the cyclized forms of each of the sixteen, which adds a chiral carbon, D-Glucose for example:

D-glucose can cyclize intramolecularly



Sugar Wordsearch

Terry L. Helser

Department of Chemistry, SUNY College at Oneonta, Oneonta, NY 13820-4015; helsertl@oneonta.edu

This puzzle contains 29 names, terms, prefixes, and acronyms that describe sugars and their polymers. Find and highlight these terms in the matrix below. "CARBOHYDRATE" is already done for you. Then, correctly transfer them to the blanks in the description below the matrix. Use the letters remaining in the matrix to complete the sentence describing these molecules. Your success will be rewarded. The answers to the Sugar Wordsearch are found below. Good hunting!

CARBOHYDRATEs can be S_____ S____s that are either A_____ or K_____ and are therefore R_____ sugars. Table sugar, S_____, is a D_____ of the H____s F____ and G_____ in cyclic furanose and P_____ forms, respectively. L_____ is glucose linked to G_____. Plants store energy in the ____saccharide S____, which contains A_____ and A_____. The animal equivalent is G_____. The only ____mer in them is the alpha A_____ of glucose. Beta-linked glucose or N-acetylglucosamine makes C_____ or C_____, respectively. Both are structural polymers. Complex molecules like G_____s and ____P___s have sugars attached. Finally, phosphodi_____ bonds link R_____ units in the backbone of ____. Converting the pentose into the deoxy form produces a strand.

Organic Functional Group Sudoku Puzzle adapted from Crute, Thomas D.; Myers, Stephanie A., J. Chem. Educ. 2007, 84, 612
The precursor of the sadoku puzzle was first published in the United States in 1979 by Howard Garns, a retired ar- chitect and freelance puzzle constructor. In April 1984, the puzzle was introduced in Japan and the name "suchos" was assigned to the puzzle. "Souji wa dokushin ni kagim" may be translated as "the numbers musz be single" or "the numbers musz occur only once". Later the name was abbreviated to sudoka (pronounced SUE-dough-coor "su" means numbes, "doku" means single). In April 2005, The New York Por pab- lished sudoko puzzles as a regular feature and by July 2005, the puzzle surged in popularity all over the country (1, 2).

The following Sudoku puzzle deals with the names and generic structures of organic functional groups found in organic molecules. They do not deal directly with numbers as

	R-COOH					R-CONH ₂	R-NH ₂	R-CO-R'
R-NH ₂	R-CI	R-CO-R′	R-OH			R-0-R′		
R-O-R'					R-COO-R'		R-Cl	R-OH
R-CO-R'								
R-COO-R	R-OH		R-O-R′	R-NH ₂	R-CO-R'		R-COOH	R-CONH ₂
								R-O-R′
R-CONH ₂	R-CO-R'		R-COOH					R-Cl
		R-NH ₂			R-CI	R-OH	R-CONH ₂	R-COO-R′
R-CI	R-COO-R'	R-CHO					R-0-R'	

Organic Molecules Functional Groups

Lipids: fats, oils, waxes, steroids, plant natural products (terpenes)

Fats produce 9 to 10 Calories per gram; More than twice the energy of sugars or proteins, which produce 4 to 5 Calories.

Except where otherwise noted, content on this site is licensed under a Creative Commons Attribution 4.0 International license.

Lipids: Fats & Oils

Lipids are natural plant & animal products more soluble in non-polar solvents like gasoline than in water.

Lipids *Common Functional Groups*

Name

Alcohols

Ethers

Amines

Carboxylic Acids

waterammoniamethaneformaldehydeformic acidImage: state s

General Formula

R-OH (R is very large, note: glycerol is not a lipid)

R-C-OH (R is very large)

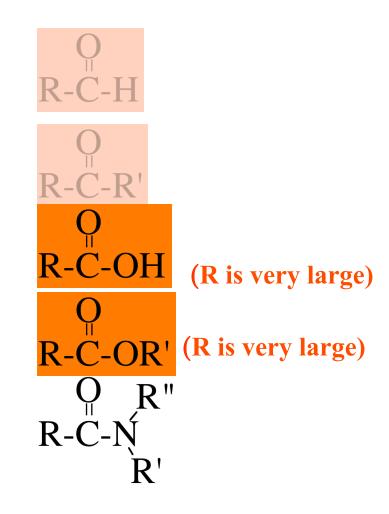
R-O-R'

 $R-NH_2$

Common Functional Groups

Name

General Formula


Aldehydes

Ketones

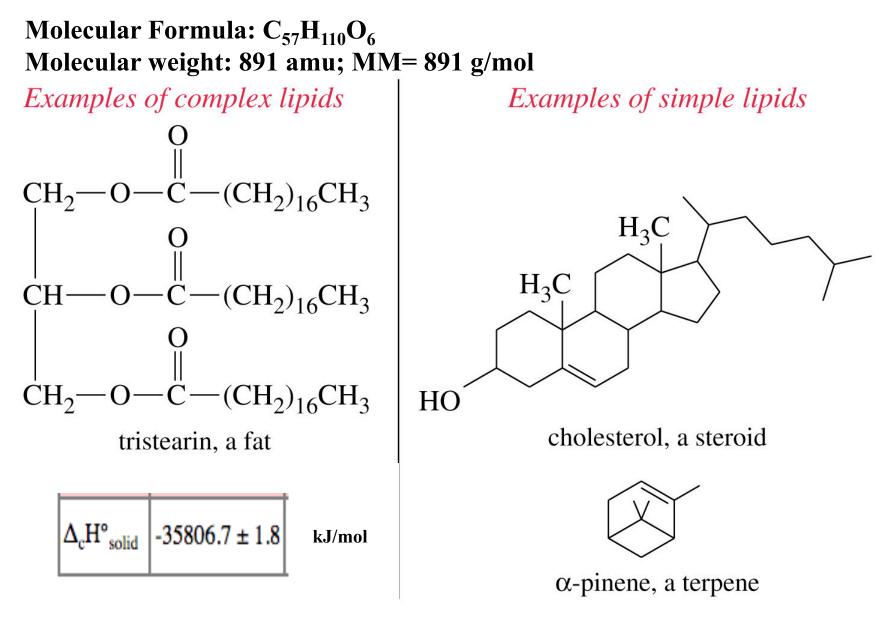
Carboxylic Acids

Esters

Amides

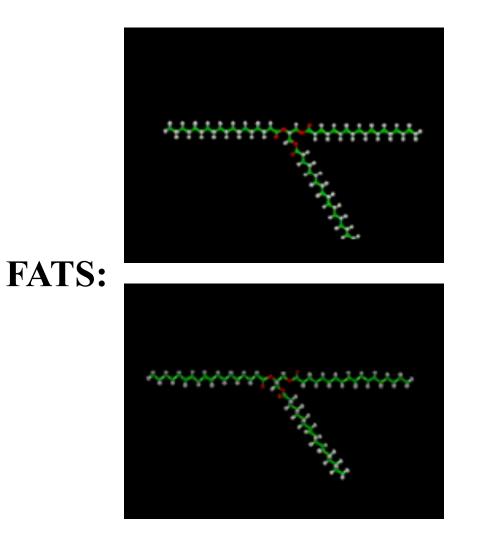
Lipid Wordsearch

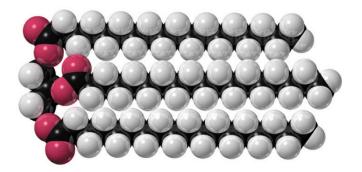
Terry L. Helser. Department of Chemistry, SUNY, College at Onconta, Onconta, NY, 13820-4015; helsertl@onconta_edu.

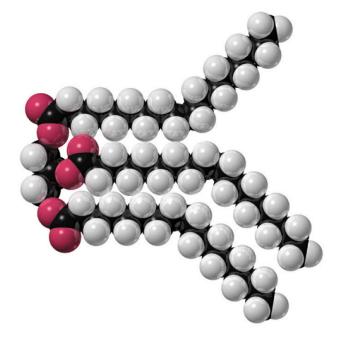

This puzzle contains 37 names, terms, prefixes and acronyms that describe lipids. They may be in any linear direction. Find and highlight these terms in the matrix below. "TRIACYLGLYCEROL" is already done for you. Then, correctly transfer them to the blanks in the description below the matrix. Use the letters remaining in the matrix to complete the sentence describing these molecules. Your success will be rewarded. The answers to the Lipid <u>Wordsearch</u> are found below. Good hunting!

 N
 F
 A
 T
 T
 N
 E
 S
 S
 E
 S
 L
 A
 I
 T
 N
 E
 S
 S
 L
 S
 L
 A
 I
 T
 N
 E
 S
 S
 L
 S
 L
 A
 I
 T
 N
 E
 S
 S
 L
 A

 I
 P
 O
 R
 E
 T
 S
 E
 A
 C
 I
 D
 P
 T
 T
 D
 A


 D
 A
 C
 Y
 L
 F
 A
 T
 X
 T
 I
 H
 A
 S
 A
 I
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N</td


TRIACYLGLYCEROLS are E___s of P____, S_____, and O____ with glycerol. S_____ them to make S___. B___O____ cleaves their _____ C___s into A ______s. The E______ F____ A__s include ______ and ____N__, which are P__U____ with 2 or 3 C__ double bonds. They are precursors for P______ hormones and maintain F_____M____ membranes as part of P______ and S____M___. Hydrogenating such L____ makes O__, which can contain T_____ double bonds. L____ is a W__. Polymers of I_____ form the T_____s and other simple L_____ like the S______, C_____, and ____ D hormones. Use the remaining 16 letters to fill in the following sentence: ______for _____.



 C_{10} , C_{15} , C_{20} , etc.

http://chemconnections.org/general/movies/fat-satd.MOV

http://chemconnections.org/general/movies/fat-unsatd.MOV

Organic Functional Group Sudoku Puzzle adapted from Crute, Thomas D.; Myers, Stephanie A., J. Chem. Educ. 2007, 84, 612
The precursor of the sadoku puzzle was first published in the United States in 1979 by Howard Garns, a retired ar- chitect and freelance puzzle constructor. In April 1984, the puzzle was introduced in Japan and the name "suchos" was assigned to the puzzle. "Souji wa dokushin ni kagim" may be translated as "the numbers musz be single" or "the numbers musz occur only once". Later the name was abbreviated to sudoka (pronounced SUE-dough-coor "su" means numbes, "doku" means single). In April 2005, The New York Por pab- lished sudoko puzzles as a regular feature and by July 2005, the puzzle surged in popularity all over the country (1, 2).

The following Sudoku puzzle deals with the names and generic structures of organic functional groups found in organic molecules. They do not deal directly with numbers as

	R-COOH					R-CONH ₂	R-NH ₂	R-CO-R'
R-NH ₂	R-CI	R-CO-R′	R-OH			R-0-R′		
R-O-R'					R-COO-R'		R-Cl	R-OH
R-CO-R'								
R-COO-R	R-OH		R-O-R′	R-NH ₂	R-CO-R'		R-COOH	R-CONH ₂
								R-O-R′
R-CONH ₂	R-CO-R'		R-COOH					R-Cl
		R-NH ₂			R-CI	R-OH	R-CONH ₂	R-COO-R′
R-CI	R-COO-R'	R-CHO					R-0-R'	