

QUESTION

Which of the following frequencies corresponds to light with the longest wavelength? A. $3.00 \times 10^{13} \text{ s}^{-1}$

B. $4.12 \times 10^5 \, \text{s}^{-1}$

C. $8.50 \times 10^{20} \text{ s}^{-1}$

D. $9.12 \times 10^{12} \,\mathrm{s}^{-1}$

E. $3.20 \times 10^9 \text{ s}^{-1}$

Planck's Constant

Transfer of energy is quantized, and can only occur in discrete units, called $\Delta E = hv = \frac{hc}{}$ quanta.

δ ΔE = change in energy, in J

 δ h = Planck's constant, $6.626 \times 10^{-34} \text{ J s}$

 $\delta v = frequency, in s^{-1}$

 $\delta \lambda = wavelength, in m$

ĕ c = speed of light

QUESTION If I = 3, how many electrons can be contained in all the possible orbitals? A) 7 B) 6 C) 14 D) 10 E) 5

Quantum Theory

- Based on experimental observations of light and particles
 Developed through rigorous
- Developed through rigorous mathematical computations
- Bridges physics and chemistry
- 6 Generally described as quantum mechanics aka quantum chemistry

https://www.youtube.com/watch?v=4QlcKuxDGrs
Heisenberg Uncertainty Principle

The more accurately we know a particle's position, the less accurately we can know its momentum or vice versa.
Quantum Entanglement/Superposition
Schrödinger's Cat: Alive or Dead?
Can something be in two places at the same time?

Quantum Numbers (QN) for Electrons (Solutions for the Schrödinger Equation: HΨ = EΨ) Where: Ψ = Wave function
δ 1. Principal QN (integer n = 1, 2, 3, ...): relates to size and energy of the orbital.
δ 2. Angular Momentum QN (integer I or λ) = 0 to n - 1): relates to shape of the orbital.
δ 3. Magnetic QN (integer m | or m | = +1 to -1): relates to orientation of the orbital in space relative to other orbitals.
δ 4. Electron Spin QN: (m_S = +1/2, -1/2): relates to the spin state of the electron.

QUESTION How many f orbitals have the value n = 4? A) 0 B) 3 C) 5 D) 7 E) 1

QUESTION

In which groups do all the elements have the same number of valence electrons?

- A) K, Ca, Ar, S
- B) Na, Mg, S, Cl C) Na, K, Rb, Cs
- D) Li, Be, B, C
- E) None of these

QUESTION

The electron configuration for the barium atom

- A) $1s^22s^22p^63s^23p^63d^{10}4s^2$ B) [Xe] $6s^2$ C) $1s^22s^22p^63s^23p^64s^1$ D) $1s^22s^22p^63s^23p^64s^2$

- E) none of these

Partial Orbital Diagrams and Electron Configurations* Partial Orbital Diagram Condensed					
Atomic Number	Element	(4s, 3d, and 4p		Full Electron Configuration	Electron Configuration
		4s	3 <i>d</i>	4p	
19	K	1		$[1s^2 2s^2 2p^6 3s^2 3p^6] 4s^1$	[Ar] 4s1
20	Ca	îΙ		$[1s^2 2s^2 2p^6 3s^2 3p^6] 4s^2$	[Ar] 4s2
21	Sc	↑¥	1	$[1s^2 2s^2 2p^6 3s^2 3p^6] 4s^2 3d^1$	[Ar] 4s2 3d1
22	Ti	11	1 1	$[1s^2 2s^2 2p^6 3s^2 3p^6] 4s^2 3d^2$ $[1s^2 2s^2 2p^8 3s^2 3p^6] 4s^2 3d^3$	[Ar] 4s2 3d2
23	V	îΙ	1 1 1	$[1s^2 2s^2 2p^6 3s^2 3p^6] 4s^2 3d^3$	[Ar] 4s2 3d3
24	Cr	1	1 1 1 1 1	[1s ² 2s ² 2n ⁶ 3s ² 3n ⁶] 4s ¹ 3d ⁵	[Ar] 4s1 3d5
25	Mn	11	1 1 1 1 1	$[1s^2 2s^2 2p^6 3s^2 3p^6] 4s^2 3d^5$ $[1s^2 2s^2 2p^6 3s^2 3p^6] 4s^2 3d^6$	[Ar] 4s23d5
26	Fe	ŤΨ	11 1 1 1 1	$[1s^2 2s^2 2p^6 3s^2 3p^6] 4s^2 3d^6$	[Ar] 4s 23d6
27	Co	↑↓	11 11 1 1 1	$[1s^2 2s^2 2p^6 3s^2 3p^6] 4s^2 3d^7$	[Ar] 4s23d7
28	Ni	ŤΨ	11 11 11 1 1	$[1s^2 2s^2 2p^6 3s^2 3p^6] 4s^2 3d^7$ $[1s^2 2s^2 2p^6 3s^2 3p^6] 4s^2 3d^8$	[Ar] 4s 23d8
29	Cu	1	11 11 11 11 11	[1s ² 2s ² 2n ³ 3s ² 3n ⁶] 4s ¹ 3d ¹⁰	[Ar] 4s1 3d10
30	Zn	îΙ	11 11 11 11 11	$[1s^2 2s^2 2p^6 3s^2 3p^6] 4s^2 3d^{10}$	[Ar] 4s23d10
31	Ga	11	11 11 11 11 11	1 [1s22s2p63s23p6] 4s23d104p1	[Ar]4s23d104
32	Ge	ŤΙ	11 11 11 11 11	1 1 $[1s^2 2s^2 2p^6 3s^2 3p^6] 4s^2 3d^{10} 4p^2$	[Ar]4s23d104
33	As	ŤΙ	11 11 11 11 11	1 1 1 [1s22s22p63s23p6] 4s23d104p3	[Ar]4s23d104
34	Se	11	11 11 11 11 11	11 1 1 [1s22s22p63s23p6] 4s23d104p4	[Ar]4s23d104
35	Br	ŢΨ	14 14 14 14 14	1111 1 [1s22s22p63s23p6] 4s23d104p5	[Ar]4s23d104
36	Kr	14	11 11 11 11 11 11	11111 [1s22s22p63s23p6] 4s23d104p6	[Ar]4s23d104

Summary: Information from the Periodic Table 8 1. Can obtain Group A valence electron configurations 8 2. Can determine individual electron configurations. This information can be used to: 9 a. Predict the physical properties and general chemical behavior of the elements. 9 b. Identify metals and nonmetals. 9 c. Predict ions & formulas of compounds