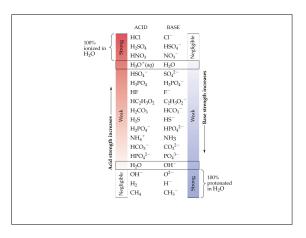
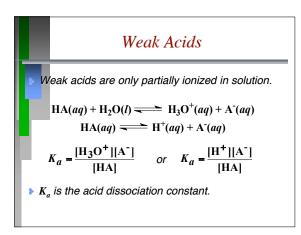
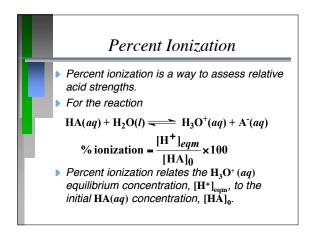
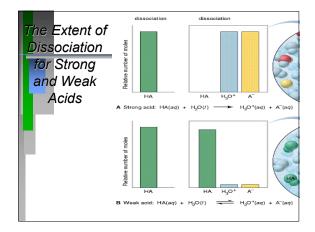
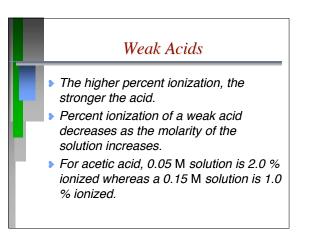

Conj	iugate Act	id/Base P	airs		
►HA(aq) acid 1	+ H ₂ O(l) → base 2	· H ₃ O⁺(aq) · conj acid 2	+ A⁻(aq) conj base 1		
 conjugate acid: formed when the proton is transferred to the base. 					
	e base: eve 1 molecule a				

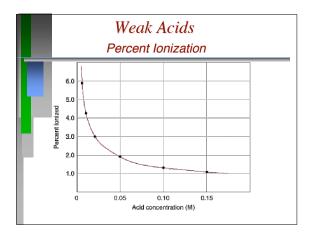


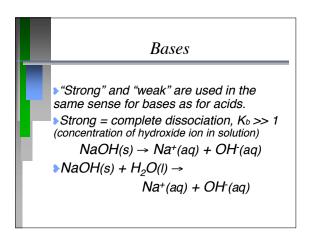


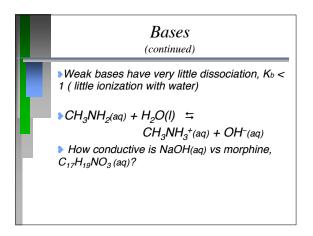


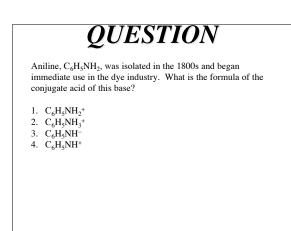


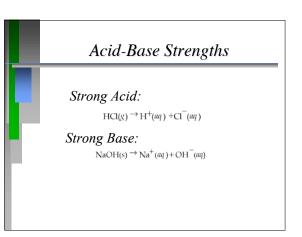


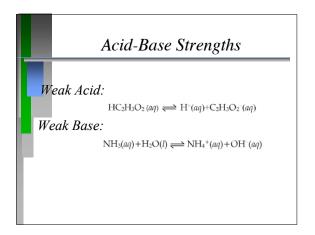


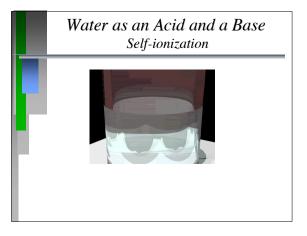


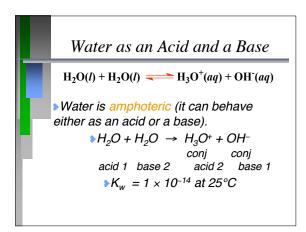


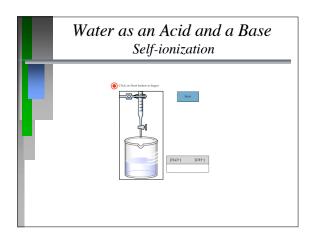

QUESTION

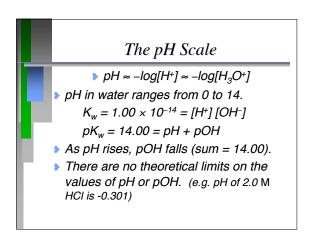

Nitric acid, HNO_3 , is considered to be a strong acid whereas nitrous acid, HNO_2 , is considered to be a weak acid. Which of the statements here is fully correct?

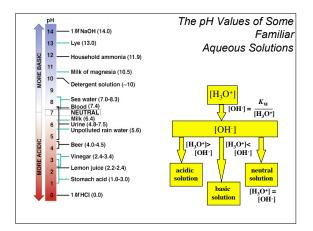

- 1. Nitric acid has an aqueous equilibrium that lies far to the right and NO_3^- is considered a weak conjugate base.
- Nitric acid has a stronger conjugate base than nitrous acid.
 The dissociation of nitrous acid compared to an equal
- concentration of nitric acid produces more H⁺. 4. The equilibrium of nitrous acid lies far to the left and the
- conjugate base is weaker than the conjugate base of nitric acid.

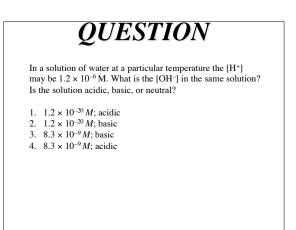


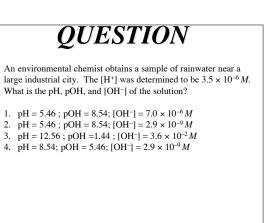


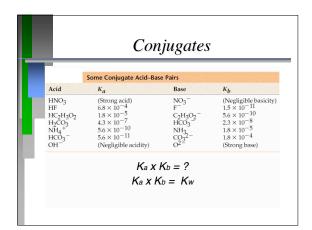


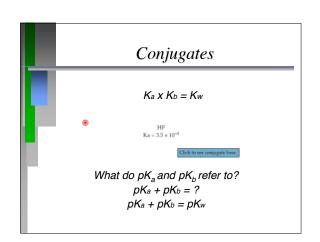


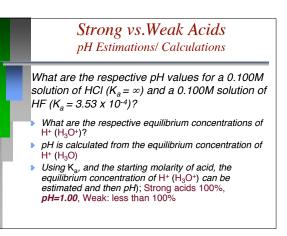


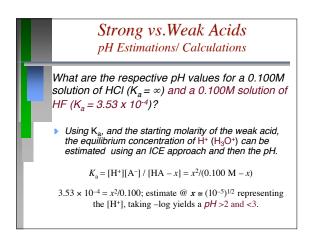




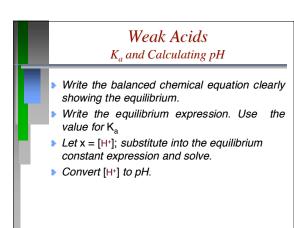

The			[H ₃ O ⁺]	рН	[OH-]	рОН
The			1.0 × 10 ⁻¹⁵	15.00	1.0 × 10 ¹	-1.00
Relations	ပ		1.0×10^{-14}	14.00	1.0×10^{0}	0.00
Among	MORE BASIC	BASIC 1.0 × 10	1.0×10^{-13}	13.00	1.0×10^{-1}	1.00
[H ₃ O ⁺], pH.	8		1.0×10^{-12}	12.00	1.0×10^{-2}	2.00
	Ë		1.0 × 10 ⁻¹¹	11.00	1.0×10^{-3}	3.00
IOH-1	ž		1.0×10^{-10}	10.00	1.0×10^{-4}	4.00
and nOH			1.0 × 10 ⁻⁹	9.00	1.0×10^{-5}	5.00
and pOH			1.0 × 10 ⁻⁸	8.00	1.0×10^{-6}	6.00
		NEUTRA	L 1.0 × 10 ^{−7}	7.00	1.0×10^{-7}	7.00
			1.0 × 10 ⁻⁶	6.00	1.0×10^{-8}	8.00
	U		1.0×10^{-5}	5.00	1.0×10^{-9}	9.00
	MORE ACIDIC		1.0×10^{-4}	4.00	1.0×10^{-10}	10.00
	AC	ACIDIC	1.0 × 10 ^{−3}	3.00	1.0×10^{-11}	11.00
	끮	ACIDIC	1.0 × 10 ⁻²	2.00	1.0×10^{-12}	12.00
	NO NO		1.0 × 10 ^{−1}	1.00	1.0×10^{-13}	13.00
			1.0 × 10 ⁰	0.00	1.0×10^{-14}	14.00
			1.0×10^{1}	-1.00	1.0×10^{-15}	15.00

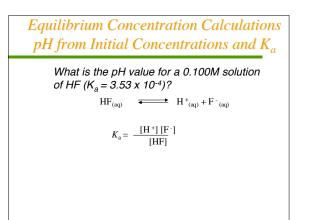



	The pH S			
[H ⁺]	[OH-]	pН	рОН	acidic or basic?
$7.5 \times 10^{-3} M$	1.3x10-12	2.12	11.88	
2.8x10 ⁻⁵	$3.6 imes 10^{-10} M$	4.6		
5.62x10 ⁻⁹		8.25		
			5.70	

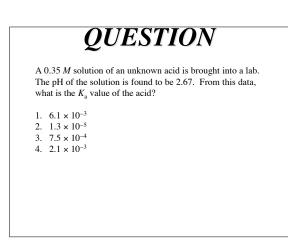


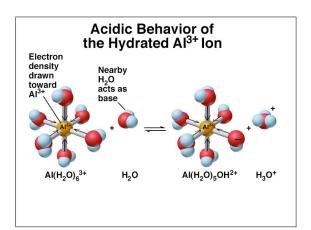
Formula	Name	Value of K.*	
HSO ₄ HCIO ₂ HC ₁ II ₂ CIO ₂ HF HNO ₂ HC ₂ H ₃ O ₂ [Al(II ₂ O) ₄] ² HOCI HCN NH ₄ ⁻ HOC ₆ H ₅	Hydrofluoric acid Nitrous acid Acetic acid	$\begin{array}{c} 1.2\times10^{-7}\\ 1.2\times10^{-2}\\ 1.35\times10^{-3}\\ 7.2\times10^{-4}\\ 4.0\times10^{-4}\\ 1.8\times10^{-5}\\ 1.4\times10^{-5}\\ 3.5\times10^{-8}\\ 6.2\times10^{-10}\\ 5.6\times10^{-10}\\ 1.6\times10^{-10}\\ \end{array}$	Increasing acid strength
tion o		1.6×10^{-10}	ollo



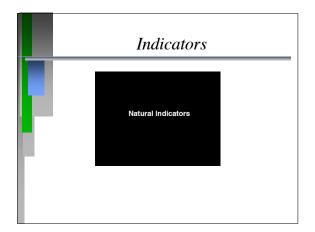


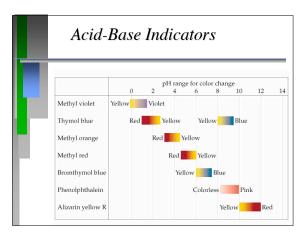
Which of the following correctly compares strength of acids, pH, and concentrations?

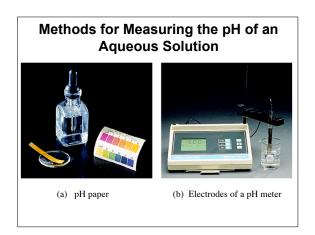

- 1. A weak acid, at the same concentration of a strong acid, will have a lower pH.
- 2. A weak acid, at the same concentration of a strong acid, will have the same pH.
- 3. A weak acid, at a high enough concentration more than a strong acid, could have a lower pH than the strong acid.
- 4. A weak acid, at a concentration below a strong acid, could have a lower pH than a strong acid.

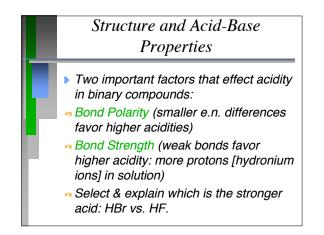


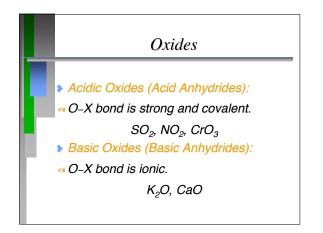
× 1/	$I_{(aq)}^{+} + F_{(aq)}^{-}$	(aq)		lations
Concentration (M)	HF	H +	F	
Initial	0.100	0	0	
Change	0.100-x	+x	+x	
Final	0.100-x	х	х	
$K_{\rm c} = \frac{[{\rm H}^+][{\rm F}^-]}{[{\rm HF}]} = 3.53 \times 10^{-4} = \frac{{\rm x}^2}{(0.100 - {\rm x})}$				
$3.53 \times 10^{-4} (0.100 - x) = x^{2}$ Quadratic: $0 = x^{2} + 3.53 \times 10^{-4} x - 3.53 \times 10^{-5}$ $x = [H^{+}] = 0.00805 M; pH = 2.09$			10 -4 (0	$(100) = x^2$
	Initial Change Final $[H^+][F^-]= 3.53 \times 1$ [HF] = 3.53 × 10 ⁻⁴ (0.100 c: 3.53 × 10 ⁻⁴ × - 3.53	Initial 0.100 Change 0.100-x Final 0.100-x $[H^+][F^-]$ $3.53 \times 10^{-4} = \frac{3}{(0.1)}$ $3.53 \times 10^{-4} (0.100 - x) = x^2$ c: $3.53 \times 10^{-4} x - 3.53 \times 10^{-5}$	Initial 0.100 0 Initial 0.100-x +x Final 0.100-x x [H+][F ⁻]= 3.53 x 10 ⁴ = $\frac{x^2}{(0.100 - x)}$ 3.53 x 10 ⁴ (0.100 - x) = x ² c: 3.53 x 10 ⁴ x - 3.53 x 10 ⁵ Simplifi a.53 x 10 ⁴ x - 3.53 x 10 ⁵ 3.53 x	$\frac{[H^+][F^-]}{[HF]} = 3.53 \times 10^{-4} = \frac{x^2}{(0.100 - x)}$ $\frac{(H^+][F^-]}{[HF]} = 3.53 \times 10^{-4} = \frac{x^2}{(0.100 - x)}$ $3.53 \times 10^{-4} (0.100 - x) = x^2$ simplified: $3.53 \times 10^{-4} x - 3.53 \times 10^{-5}$ Simplified: $3.53 \times 10^{-4} x - 3.53 \times 10^{-5}$

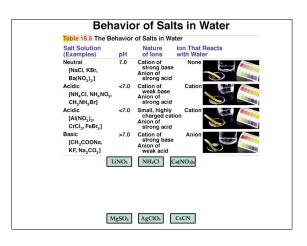

	QUESTION
	tyric acid is a weak acid that can be found in spoiled butter.
	e compound has many uses in synthesizing other flavors. e K_a of $HC_4H_7O_2$ at typical room temperatures is 1.5×10^{-5} .
	hat is the pH of a 0.20 M solution of the acid?
1.	5.52
2.	4.82
3.	2.76
4.	-0.70

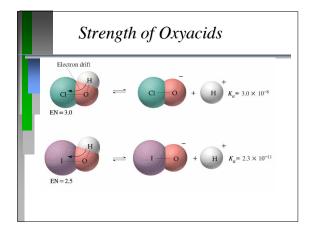


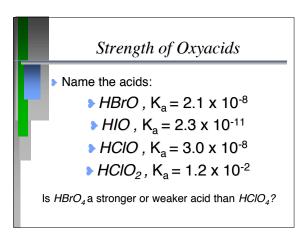


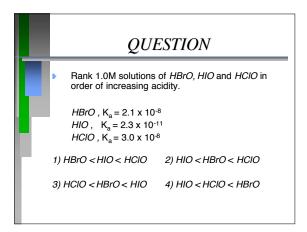

25°C		
Ion	K_{a}	
		<u> </u>
Fe ³⁺ (aq)	6 x 10 ⁻³	
Sn ²⁺ (aq)	4 x 10 ⁻⁴	
Cr ³⁺ (aq)	1 x 10 ⁻⁴	
Al ³⁺ (aq)	1 x 10 ⁻⁵	
Be ²⁺ (aq)	4 x 10 ⁻⁶	
Cu^{2+} (aq)	3 x 10 ⁻⁸	
Pb ²⁺ (aq)	3 x 10 ⁻⁸	
Zn^{2+} (aq)	1 x 10 ⁻⁹	
Co^{2+} (aq)	2 x 10 ⁻¹⁰	
Ni^{2+} (aq)	1 x 10 ⁻¹⁰	

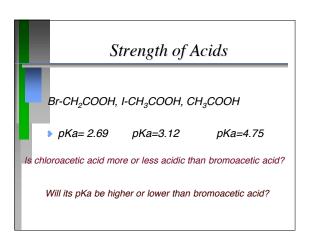

	QUE	ESTIO	N				
The following salts were all placed in separate solutions at the same temperature so that their concentrations were all equal. Arrange them in order from lowest pH to highest pH.							
NaC	l; NH ₄ NO	O_3 ; $Ca(C_2H_3O_2$) ₂ ; AlCl ₃				
		f_{b} for NH ₃ = 1.8 × for Al(H ₂ O) ³⁺ =					
1. NaCl;	NH ₄ NO ₃ ;	$Ca(C_2H_3O_2)_2;$	AlCl ₃				
2. AlCl ₃ ;	NaCl;	NH ₄ NO ₃ ;	$Ca(C_2H_3O_2)_2$				
3. AlCl ₃ ;	NH ₄ NO ₃ ;	NaCl;	$Ca(C_2H_3O_2)_2$				
4. NH ₄ NO ₃ ;	AlCl ₃ ;	NaCl;	$Ca(C_2H_3O_2)_2$				



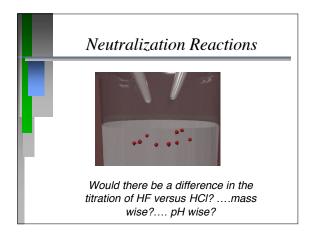








QUE	ESTION					
Rank 1.0M solutions of HBrO, HIO and HCIO in order of increasing pH						
HBrO , $K_a = 2.1 \times 10^{-8}$ HIO , $K_a = 2.3 \times 10^{-11}$ HClO , $K_a = 3.0 \times 10^{8}$						
1) HBrO < HIO < HClO	2) HIO < HBrO < HClO					
3) HCIO < HBrO < HIO	4) HIO < HCIO < HBrO					


Acid	Formula	K _a (25°C)
Acetic	CH ₃ COOH	1.8×10^{-5}
Chloroacetic	CH ₂ CICOOH	1.4×10^{-3}
Dichloroacetic	CHCl2COOH	3.3×10^{-2}
Trichloroacetic	CCl ₃ COOH	2×10^{-1}

	QUESTIO	V
increasing A) Br-CH ₂ COOI pKa= 2.69	•	Н, С) СН ₃ СООН pKa=4.75

QUESTION

Ascorbic acid, also known as vitamin C, has two hydrogen atoms that ionize from the acid. $Ka_1 = 7.9 \times 10^{-5}$; $Ka_2 = 1.6 \times 10^{-12}$. What is the pH, and $C_6H_6O_6^{2-}$ concentration of a 0.10 M solution of $H_2C_6H_6O_6$?

