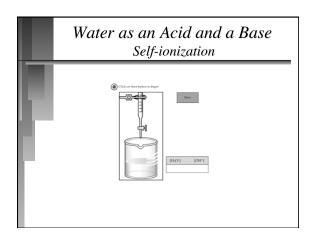
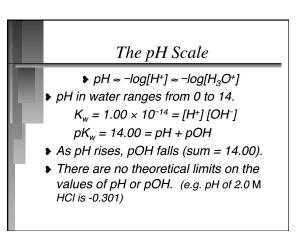
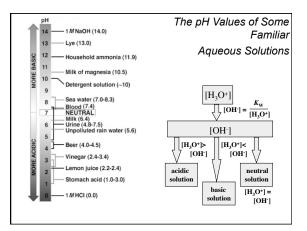
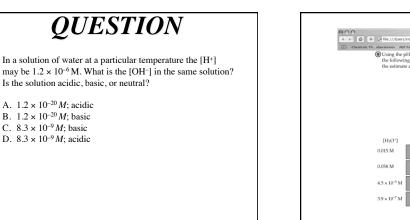
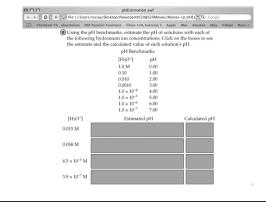

Aniline, $C_6H_5NH_2$, was isolated in the 1800s and began immediate use in the dye industry. What is the formula of the conjugate acid of this base?


- A. C₆H₅NH₂⁺
- B. $C_6H_5NH_3^+$ C. $C_6H_5NH^-$
- D. $C_6H_5NH^+$

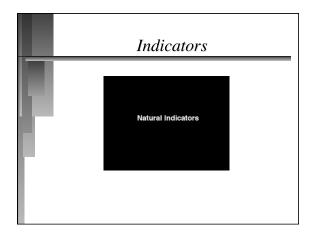


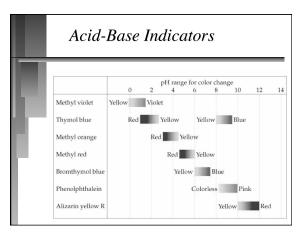






The			[H ₃ O ⁺]	pН	[OH-]	рОН
The		<u> </u>	1.0 × 10 ⁻¹⁵	15.00	1.0 × 10 ¹	-1.00
Relations	C		1.0 × 10 ⁻¹⁴	14.00	1.0×10^{0}	0.00
Among	MORE BASIC		1.0×10^{-13}	13.00	1.0×10^{-1}	1.00
[H ₃ O ⁺],	8	BASIC	1.0×10^{-12}	12.00	1.0×10^{-2}	2.00
рН.	Ë		1.0 × 10 ⁻¹¹	11.00	1.0×10^{-3}	3.00
[OH⁻],	Ň		1.0×10^{-10}	10.00	1.0×10^{-4}	4.00
and nOH			1.0×10^{-9}	9.00	1.0×10^{-5}	5.00
and pOH			1.0×10^{-8}	8.00	1.0×10^{-6}	6.00
	\square	NEUTRAL	1.0 × 10 ⁻⁷	7.00	1.0×10^{-7}	7.00
			1.0×10^{-6}	6.00	1.0×10^{-8}	8.00
	C		1.0×10^{-5}	5.00	1.0×10^{-9}	9.00
	₫		1.0×10^{-4}	4.00	1.0×10^{-10}	10.00
	AC	ACIDIC	1.0 × 10 ^{−3}	3.00	1.0×10^{-11}	11.00
	麗	ACIDIC	1.0 × 10 ⁻²	2.00	1.0×10^{-12}	12.00
	MORE ACIDIC		1.0 × 10 ⁻¹	1.00	1.0×10^{-13}	13.00
	-		1.0×10^{0}	0.00	1.0×10^{-14}	14.00
			1.0 × 10 ¹	-1.00	1.0×10^{-15}	15.00





An environmental chemist obtains a sample of rainwater near a large industrial city. The [H⁺] was determined to be $3.5 \times 10^{-6} M$. What is the pH, pOH, and [OH⁻] of the solution?

- A. pH = 5.46 ; pOH = 8.54; [OH⁻] = 7.0 × 10⁻⁶ M B. pH = 5.46 ; pOH = 8.54; [OH⁻] = 2.9 × 10⁻⁹ M C. pH = 12.56 ; pOH = 1.44 ; [OH⁻] = 3.6 × 10⁻² M
- D. pH = 8.54; pOH = 5.46; [OH⁻] = $2.9 \times 10^{-9} M$

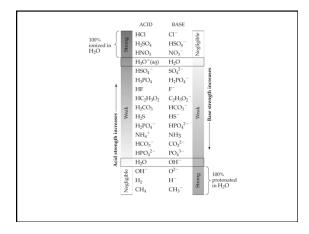
	The pH S	Scale	2	
[H ⁺]	[OH-]	pН	рОН	acidic or basic?
$7.5 \times 10^{-3} M$	1.3 x10 -12	2.1	11.9	Acid
2.8 x10 -5	$3.6 \times 10^{-10} M$	4.6	9.4	Acid
5.62 x10 ^{- 9}	1.78 x10 ⁻⁶	8.25	5.75	Base
5.00 x10 ^{- 9}	2.00 x10 ^{- 6}	8.30	5.70	Base

Most acid-base indicators are weak acids. In a titration of 0.50 *M* acetic acid (at 25°C, $K_a = 1.8 \times 10^{-5}$) with KOH, which indicator would best indicate the pH at the equivalence point? The approximate K_a for each choice is provided.

- A. Bromophenol blue; $K_{\rm a} \sim 1 \times 10^{-4}$
- B. Methyl red; $K_a \sim 1 \times 10^{-5}$
- C. Bromothymol blue; $K_a \sim 1 \times 10^{-7}$ D. There a light that size $K_a \sim 1 \times 10^{-10}$
- D. Thymolphthalein; $K_a \sim 1 \times 10^{-10}$

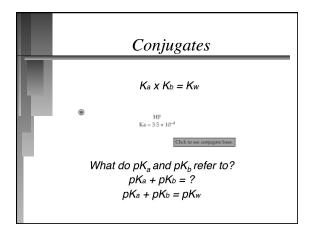
Methods for Measuring the pH of an Aqueous Solution

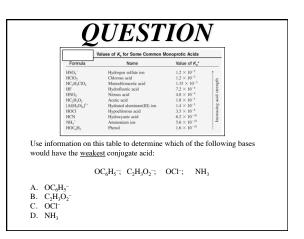
(a) pH paper

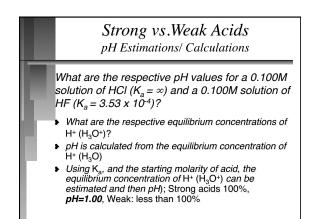

(b) Electrodes of a pH meter

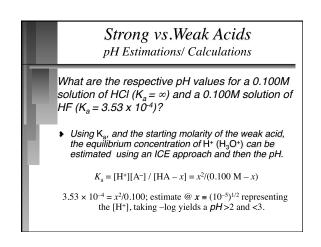
QUESTION

The acid-base indicator bromocresol purple has an interesting yellow-to-purple color change. If the approximate K_a of this indicator is 1.0×10^{-6} , what would be the ratio of purple [A⁻] to yellow [HA] at a pH of 4.0?

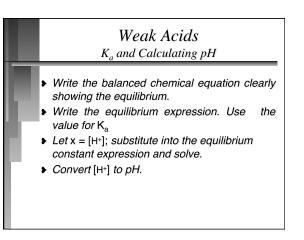

- A. 100:1
- B. 1:100
- C. 1:1

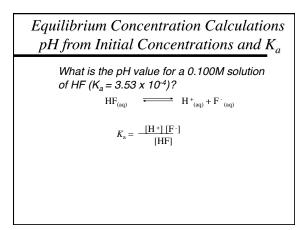

D. This choice indicates that I don't know.




The			[H ₃ O ⁺]	pН	[OH-]	рОН
The		<u> </u>	1.0 × 10 ⁻¹⁵	15.00	1.0 × 10 ¹	-1.00
Relations	S		1.0×10^{-14}	14.00	1.0×10^{0}	0.00
Among	MORE BASIC		1.0×10^{-13}	13.00	1.0×10^{-1}	1.00
[H ₃ O ⁺],	B	BASIC	1.0×10^{-12}	12.00	1.0×10^{-2}	2.00
pH.	Ë		1.0 × 10 ⁻¹¹	11.00	1.0×10^{-3}	3.00
[OĤ⁻],	Ň		1.0×10^{-10}	10.00	1.0×10^{-4}	4.00
			1.0×10^{-9}	9.00	1.0×10^{-5}	5.00
and pOH			1.0×10^{-8}	8.00	1.0×10^{-6}	6.00
	\vdash	NEUTRA	L 1.0 × 10 ^{−7}	7.00	1.0×10^{-7}	7.00
			1.0×10^{-6}	6.00	1.0×10^{-8}	8.00
	o		1.0×10^{-5}	5.00	1.0×10^{-9}	9.00
	ē		1.0×10^{-4}	4.00	1.0×10^{-10}	10.00
	AC	ACIDIC	1.0×10^{-3}	3.00	1.0×10^{-11}	11.00
	MORE ACIDIC	ACIDIC	1.0 × 10 ⁻²	2.00	1.0×10^{-12}	12.00
			1.0 × 10 ⁻¹	1.00	1.0×10^{-13}	13.00
			1.0 × 10 ⁰	0.00	1.0×10^{-14}	14.00
			1.0 × 10 ¹	-1.00	1.0×10^{-15}	15.00

	Some Conjugate Acid–Bas	e Pairs	
Acid	K _a	Base	Kb
HNO3	(Strong acid)	NO ₃ ⁻	(Negligible basicity 1.5×10^{-11}
HF	6.8×10^{-4} 1.8×10^{-5}	F ⁻	1.5×10^{-11} 5.6×10^{-10}
HC2H3O2		HCO ₂	
NH4+	5.6×10^{-10}	NH2	
HCO3-	5.6×10^{-11}	CO32-	1.8×10^{-4}
OH-	(Negligible acidity)	O ² [≤]	(Strong base)
H ₂ ĈO ₃ NH ₄ ⁺ HCO ₃ ⁻	4.3×10^{-7} 5.6×10^{-10} 5.6×10^{-11} (Negligible acidity)	$K_{b} = ?$	2.3×10^{-8} 1.8×10^{-5} 1.8×10^{-4}





Which of the following correctly compares strength of acids, pH, and concentrations?

- A. A weak acid, at the same concentration of a strong acid, will have a lower pH.
- B. A weak acid, at the same concentration of a strong acid, will have the same pH.
- C. A weak acid, at a high enough concentration more than a strong acid, could have a lower pH than the strong acid.
- D. A weak acid, at a concentration below a strong acid, could have a lower pH than a strong acid.

Equilibrium Concentration Calculations						
Concentration (M)	HF	H+	F-			
Initial	0.100	0	0			
Change	0.100-x	+x	+x			
Final	Final 0.100-x		х			
$K_{\rm c} = \frac{[{\rm H}^+][{\rm F}^-]}{[{\rm H}{\rm F}]} = 3.53 \times 10^{-4} = \frac{{\rm x}^2}{(0.100 - {\rm x})}$ $3.53 \times 10^{-4} (0.100 - {\rm x}) = {\rm x}^2$						
``````````````````````````````````````	Í	Simplif	ied: x ²			
Quadratic: $0 = x^2 + 3.53 \times 10^{-4} x - 3.53$	Simplified: $3.53 \times 10^{-4} = \frac{x^2}{(0.100)}$ $3.53 \times 10^{-4} (0.100) = x^2$					
x=[H ⁺ ] = 0.00805 <i>M</i> ; <i>pH</i> =2	$x=[H^+] = 0.00805 M; pH= 2.09$					
	x	•	$53 \times 10^{-4} (0.100)]^{1/2}$ 0.00594 <i>M</i> ; <i>pH</i> = 2.23			

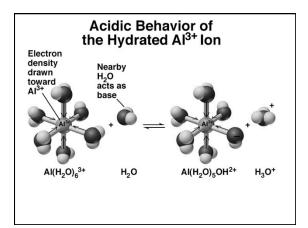
# **QUESTION**

Butyric acid is a weak acid that can be found in spoiled butter. The compound has many uses in synthesizing other flavors. The K_a of HC₄H₇O₂ at typical room temperatures is  $1.5 \times 10^{-5}$ . What is the pH of a 0.20 M solution of the acid?

A. 5.52

B. 4.82 C. 2.76

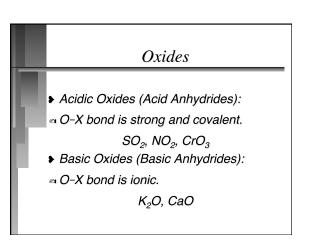
D. -0.70

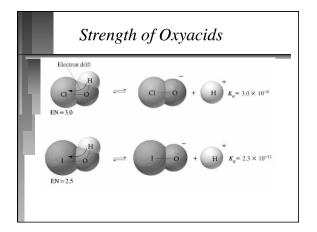

## QUESTION

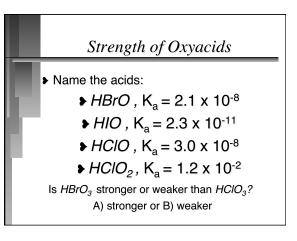
A 0.35 M solution of an unknown acid is brought into a lab. The pH of the solution is found to be 2.67. From this data, what is the  $K_a$  value of the acid?

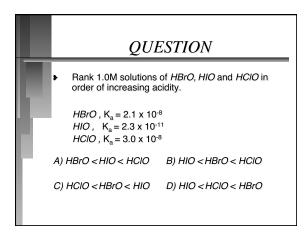
Α.	$6.1 \times 10^{-3}$
Β.	$1.3 \times 10^{-5}$
С.	$7.5 \times 10^{-4}$
D.	$2.1 \times 10^{-3}$

Sati Solution (Examples)         Nature of Ions strong acid         Ion That Reacts of Ions strong acid           Neutral         7.0         Cation of strong acid         None strong acid           Acidic         7.0         Cation of strong acid         None acid           Acidic         7.0         Cation of strong acid         None child           Acidic         7.0         Cation of strong acid         Cation of crCl ₃ , Febr., Ionio of strong acid         Cation of strong acid           Basic         >7.0         Cation of strong acid         Anion strong acid         Anion strong acid           Basic         >7.0         Cation of strong base anion of strong base Nionion         Anion strong base Nionion         Nion of strong base           NHLCI         Cationofit         Nion of strong base         Nion of strong base         Nion of strong base	(Examples)     pH     of lons     with Water       Neutral     7.0     Cation of strong acid     None       [NaCi, KBr, [NaCi, KBr, CH, NH, G1]     Cation of strong acid     None       Acidic     <7.0     Cation of strong acid     Cation of strong acid       Acidic     <7.0     Small highly charged ation (CrCu, FeBr]     Cation of strong acid       Basic     >7.0     Small highly strong acid     Cation of strong acid       Basic     >7.0     Cation of strong acid     Anion strong acid       KF, Na, Co,]     Zoona     Cation of strong base Anion of	(Examples)     pH     of lons     with Water       Neutral     7.0     Cation of strong acid     None       Acidic      Cation of strong acid     None       Acidic     <7.0     Cation of strong acid     Cation of strong acid     Cation anico of anico of strong acid     Cation of strong acid       Acidic     <7.0     Satal, highty anico of strong acid     Cation of strong acid     Cation of strong acid       Basic     <7.0     Cation of strong acid     Anion of strong acid       Basic     <7.0     Cation of strong acid     Anion weak acid	The Be	havior	of Salts in Wa	ter
[NaCl, KBr,     strong base       Acidic     <7.0       CH, MH, JBR,     <7.0       CrCl, FeBr,     Arion of       Basic     >7.0       CrCl, FeBr,     Strong acid       Basic     >7.0       CrCl, FeBr,     Cation of       IGH, Arg, Co, NH, ND,     Arion of       KF, Na, CO, I     Weak acid	[NaCl, KBr,     strong base       Acidic     <10       Child, Cl, NH4, NO3, J2     Strong acid       Acidic     <10       CH, NH4, BC,     Acidic of weak base       Acidic     <10       CH, NH4, BC,     Acidic of weak base       Acidic     <10       CH, NH4, BC,     Acidic of weak base       Acidic     <10       Acidic     <10       CrCl, FeBr,     Strong acid       Basic     >7.0       Cation of (CH, SCO),     Arion of strong acid       Mich of tion of KF, Na; CO, 1     Weak acid	[NaCl, KBr,     strong base       Acidic     <10       Child, Cl, NH4, NO3, J2     Strong acid       Acidic     <10       CH, NH4, BC,     Acidic of weak base       Acidic     <10       CH, NH4, BC,     Acidic of weak base       Acidic     <10       CH, NH4, BC,     Acidic of weak base       Acidic     <10       Acidic     <10       CrCl, FeBr,     Strong acid       Basic     >7.0       Cation of (CH, SCO),     Arion of strong acid       Mich of tion of KF, Na; CO, 1     Weak acid		pН		
[NH4 CI, NH4 NO3,     weak base       Aridor O     strong acid       Acidic     <7.0	[NH4 CI, NH4 NO3,     weak base       Aridor O     strong acid       Acidic     <7.0	[NH4 CI, NH4 NO3,     weak base       Aridor O     strong acid       Acidic     <7.0	[NaCl, KBr,	7.0	strong base Anion of	None
[Al(NO ₃ ) ₃ ,     charged cation       CrCl ₃ , FeBr ₃ ]     Anion of       Basic     >7.0       CAtion of     Anion of       (CH ₂ COONa,     Anion of       KF, Na ₂ CO ₃ ]     weak acid	[Al(NO ₃ ) ₃ ,     charged cation       CrCl ₃ , FeBr ₃ ]     Anion of       Basic     >7.0       Cation of Strong base     Anion Anion of       KF, Na ₂ CO ₃ ]     weak acid	[Al(NO ₃ ) ₃ ,     charged cation       CrCl ₃ , FeBr ₃ ]     Anion of       Basic     >7.0       Cation of Strong base     Anion Anion of       KF, Na ₂ CO ₃ ]     weak acid	[NH ₄ CI, NH ₄ NO ₃ ,	<7.0	weak base Anion of	Cation
[CH ₃ COONa, KF, Na ₂ CO ₃ ] Veak acid	[CH ₃ COONa, KF, Na ₂ CO ₃ ] Veak acid	[CH ₃ COONa, KF, Na ₂ CO ₃ ] Veak acid	[Al(NO ₃ ) ₃ ,	<7.0	charged cat Anion of	
LiNO ₂ NH ₄ Cl Ca(NO ₃ ) ₂	LiNO ₂ NH ₄ Cl Ca(NO ₃ );	LiNO ₂ NH ₄ Cl Ca(NO ₃₎₂	[CH ₃ COONa,	>7.0	strong base Anion of	Anion
XZ			Li	NO ₂	NH ₄ Cl	Ca(NO ₃ ) ₂


9	QUE	<b>STIO</b>	N
same temperat	ture so that t	ll placed in separa heir concentration n lowest pH to hi	1
NaC	l; NH ₄ NO	$O_3$ ; Ca(C ₂ H ₃ O ₂ )	) ₂ ; AlCl ₃
		for $NH_3 = 1.8 \times 10^{-5}$ for $Al(H_2O)^{3+} = 10^{-5}$	
A. NaCl:	NH ₄ NO ₃ ;	$Ca(C_2H_3O_2)_2;$	AlCl ₃
B. AlCl ₃ ;	1 2.	NH ₄ NO ₃ ;	5
C. AlCl ₃ ;	NH ₄ NO ₃ ;		$Ca(C_2H_3O_2)_2$
D. NH ₄ NO ₃ ;	AlCl ₃ ;	NaCl;	$Ca(C_2H_3O_2)_2$





<i>K</i> _a Values 25°C	of Some Hydrate	ed Metal lons at
Ion	K _a	
$\begin{array}{c} Fe^{3+}\left( aq\right) \\ Sn^{2+}\left( aq\right) \\ Cr^{3+}\left( aq\right) \\ Al^{3+}\left( aq\right) \\ Be^{2+}\left( aq\right) \\ Cu^{2+}\left( aq\right) \\ Pb^{2+}\left( aq\right) \\ Zn^{2+}\left( aq\right) \\ Co^{2+}\left( aq\right) \\ Ni^{2+}\left( aq\right) \end{array}$	$\begin{array}{c} 6 \ x \ 10^{-3} \\ 4 \ x \ 10^{-4} \\ 1 \ x \ 10^{-4} \\ 1 \ x \ 10^{-5} \\ 4 \ x \ 10^{-6} \\ 3 \ x \ 10^{-8} \\ 3 \ x \ 10^{-8} \\ 1 \ x \ 10^{-9} \\ 2 \ x \ 10^{-10} \\ 1 \ x \ 10^{-10} \end{array}$	


#### Structure and Acid-Base Properties

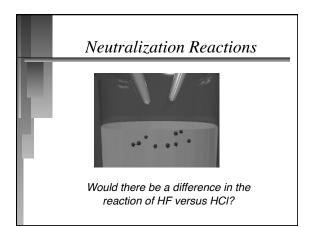
- Two important factors that effect acidity in binary compounds:
- Bond Polarity (smaller e.n. differences favor higher acidities)
- Bond Strength (weak bonds favor higher acidity: more protons [hydronium ions] in solution)
- Select & explain which is the stronger acid: HBr vs. HF.

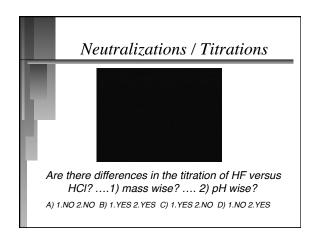









	QUE	STION
	<ul> <li>Rank 1.0M solutions o order of increasing pH</li> </ul>	f <i>HBrO, HIO</i> and <i>HCIO</i> in
ľ	HBrO , $K_a = 2.1 \times 10^{-8}$ HIO , $K_a = 2.3 \times 10^{-11}$ HCIO , $K_a = 3.0 \times 10^{-8}$	
Ε.	A) HBrO < HIO < HClO	B) HIO < HBrO < HClO
	C) HClO < HBrO < HlO	D) HIO < HClO < HBrO


Acid	Formula	K _a (25°C)
Acetic	CH ₃ COOH	$1.8 \times 10^{-5}$
Chloroacetic	CH2CICOOH	$1.4 \times 10^{-3}$
Dichloroacetic	CHCl2COOH	$3.3 \times 10^{-2}$
Trichloroacetic	CCl3COOH	$2 \times 10^{-1}$



	QUESTIO	N
decreasing 1) Br-CH₂COOH		Н, 3) СН ₃ СООН рКа=4.75

#### **QUESTION** Ascorbic acid, also known as vitamin C, has two hydrogen atoms that ionize from the acid. $K_{a_1} = 7.9 \times 10^{-5}$ ; $K_{a_2} = 1.6 \times 10^{-12}$ . What is the pH, and $C_6H_6O_6^{-2}$ concentration of a 0.10 *M* solution of $H_2C_6H_6O_6^{-2}$ ] = 0.050 *M* B. 2.55; $[C_6H_6O_6^{2-}] = 0.050 M$ B. 2.55; $[C_6H_6O_6^{2-}] = 1.6 \times 10^{-12} M$ C. 1.00; $[C_6H_6O_6^{2-}] = 1.6 \times 10^{-12} M$ D. 5.10; $[C_6H_6O_6^{2-}] = 0.050 M$



