Group Equilibrium Prelab

1. Record the respective number of red and blue spheres:

	5 s	10 s	15 s	20 s	3 min
Red					
Blue					

- a. At the instant the reaction begins, what is the rate of the reverse reaction, that of **B** going to **A**? Explain in the context of a microscopic view of the collisions of molecules.
- b. How does the rate of change in A compare to B from 0 to 10 sec?

1) Much Greater; 2) Greater; 3) Equal; 4) Less; 5) Much Less

c. How does the rate of change in A compare to B from 1 to 3 minutes?

1) Much Greater; 2) Greater; 3) Equal; 4) Less; 5) Much Less

True/False

At time = 0 seconds:

d.	The rate of the forward reaction exceeds the rate of the reverse reaction.	T / F
e.	The rate of the reverse reaction exceeds the rate of the forward reaction.	T / F
f.	For a period of ~ 20 sec. after initial mixing, the concentration of the products increases.	T / F
g.	For a period of ~ 20 sec after initial mixing, the concentration of the reactants increases.	T / F
At equ	ilibrium:	
h.	The rate of the forward reaction is zero.	T / F
i.	The rate of the reverse reaction is zero.	T / F
j.	The rate of the forward reaction is equal to the rate of the reverse reaction.	T / F
k.	The rates of the forward and reverse reactions are both constant.	T / F

2. Write the equilibrium expression for the reaction.

Using the equilibrium concentrations in question #1 calculate Kc.

3.	Record the respective number of red and blue spheres at 3 min.	Red:	Blue:
	Calculate Kc.		

4. Record the respective number of red and blue spheres at	3 min. Red:	Blue:
Calculate Kc.		

4. Compare the calculated values of Kc for the three trials. Questions #2, 3, 4.

Kc average _____ Kc average deviation_____

What do you conclude about different starting concentrations and Kc.

PART II: http://www.chm.davidson.edu/ronutt/che115/equkin/equkin.htm

1.

Red _o	Blue _o	Red _{eq}	Blue _{eq}	T (Kelvin)	Kc
80	0			298	
80	0			380	

2. In what way are the two plots (#1 and #2) similar, how do they differ?

3. Is this reaction exothermic or endothermic? Briefly explain the reasons for your selection.