

Un	its of l	Measu	re
Units	U.S.	SI	Chemistry
Mass (weight)	Pound (lb)	Kilogram (kg)	"Gram"
Volume	Gallon (gal)	Liter (L)	"Liter" (mL ,L)
Temperature	Fahrenheit (°F)	Kelvin (K)	K & Celsius (0
Length	Mile (mi), Feet(ft), Inches (in)	Meter (m)	"Meter" (cm , mm, nm
Time		Second (s)	Second (s) Mole (mol)

	QUESTI for Monda					
ľ	Assume that the earth is 4.6 billion years old and that your Chem 120 class's average lifespan will be 80 years. If the total age of the earth is represented by the face of a clock, how much time will 80 years be represented on the clock? A) 1500 microseconds B) 0.75 milliseconds					
	C) 8 x 10 ⁻⁴ seconds	D) 7.5 megaseconds				
	E) 15 gigaseconds					

Scale ba	se number
Powers of 10	
Exponential Number	Ordinary Number
$1 \times 10^{6} = 10 \times 10 \times 10 \times 10 \times 10 \times 10$	1,000,000
$1 \times 10^3 = 10 \times 10 \times 10$ $1 \times 10^2 = 10 \times 10$	1,000
$1 \times 10^{1} = 10 \times 10^{1}$ $1 \times 10^{1} = 10^{1}$	10
$1 \times 10^0 = 1$	1
$1 \times 10^{-1} = \frac{1}{10}$	0.1
$1 \times 10^{-2} = \frac{1}{10} \times \frac{1}{10}$	0.01
$1 \times 10^{-3} = \frac{1}{10} \times \frac{1}{10} \times \frac{1}{10}$	0.001
	0.000.00

		Table: Sl	prefixes		
Factor	Name	Symbol	Factor	Name	Symbol
1024	yotta	Y	10-1	deci	đ
1021	zetta	Z	10-2	centi	с
1018	exa	E	10-3	milli	m
1015	peta	P	10-6	micro	μ
1012	tera	Т	10-9	nano	n
109	giga	G	10-12	pico	p
106	mega	М	10-15	femto	f
10 ³	kilo	k	10-18	atto	a
10 ²	hecto	h	10-21	zepto	2
101	deka	da	10-24	yoeto	у

Coincidentally, a U.S. nickel has a mass of approximately 5 grams. If you had one dollar's worth of nickels in your jean's what would be the mass of the nickels in milligrams?

- A. 100 milligrams
- B. 50 milligrams
- C. 1,000 milligrams
- D. 100,000 milligrams

1000 milligrams (mg) = 1 gram (g)

Significant Digits Scientific Notation: A single digit followed by a decimal and a power of ten. power of 10 D.DD × 10ⁿ Significant digits Examples: 2,345 mL and 0.002340 g 2,345 mL = 2.345 x 10 ³mL 0.002340 g = 2.340 x 10 ⁻³ g

Scientific Notation &

Dr. R. walks into class and claims, "It is very cold in here today. It feels like 242 K." If that were the temperature, would you agree that you would feel cold? What would that be in Celsius degrees?

- A. I agree, that would be 31°C.
- B. I agree, that would be -31° C.
- C. I do not agree, that would be 31°C.
- D. I do not agree, that would be 515°C.

Reporting Numbers Rules for Significant (Digits) Figures

Exact numbers (unit, conversion or scale factors) can have an infinite number of significant figures.

- ĕ 1 liter = 1,000. ml, exactly
- δ 1 inch = 2.54 cm, exactly

Zeros Leading zeros do not count as significant figures. 0.0486 mL has how many sig figs? Number expressed in scientific notation?

		QUESTIO	N	
	In which not signi	of these measured ficant figures? I) 0.0591 cm II) 504 g III) 2.70 m IV) 5300 L	d values a	are the zeros
Γ.	A) I and II	B) II and	ш	C) I and IV
		D) I, III, and IV	E) ,	, and IV

Which one of the following does NOT represent four significant digits?

- A. 0.07100 mg B. 0.7100 mg
- C. 0.7010 mg
- D. 0.0710 mg

Comp	olete the follow nits & Conversions	ving
<i>Number</i> 13,000,000,000 yrs.	Scientific Notation	Named unit ? <u>gigayears</u>
mL	mL	0.546 Liters 0.546 L
kg	<u>8.45 x 10 ⁻¹ kg</u>	_ <u>? grams</u>

Addition Four students were each asked to measure a piece of wire and provide a total length for the four pieces. Report the result correctly: 0.05 cm 12.01 cm 1.9 cm + 2.386 cm ------

QUESTION

If you were unloading a 23.50 kg box of books from your car and a "friend" added two more 482 gram chemistry books, how much in kg and using the rules for significant digits, would you be lifting?

- A. 23.98 kg
- B. 24.464 kg
- C. 24.46 kg D. 24.5 kg

The average mass of a certain brand of vitamin C tablets is 253 mg. What is the mass of three such tablets rounded to the proper number of significant digits?

- A. 0.760 grams
- B. 0.759 grams C. 0.7590 grams
- D. 0.253 grams

