

Electrochemistry

Corrosion: A Case of Environmental Electrochemistry

Electrolytic Cells: Nonspontaneous Reactions

Important Biochemical Oxidation-Reduction Cycles

oil well casings and rebar: reinforcement bars in concrete buildings, bridges, and structures.

the cathode (the material to be protected).

QUESTION For cathodic protection used to prevent corrosion of iron to be

A. The anode used must be a better oxidizing agent than iron. B. The sacrificial anode used must react with oxygen to protect

- the iron from reacting with oxygen. C. Iron must have a higher reduction potential than the metal
- used as the anode. D. In cathodic protection systems a metal is attached or connected to iron in such a way that electrons flow away
- from the iron to the ground through the metal.
- E. The anode must be free of oxygen and water.

effective which of the following must be true?

Comparison of Voltaic and Electrolytic Cells					
		_	Electrode		
Cell Type	∆G	E _{cell}	Name	Process	Sign
Voltaic	< 0	> 0	Anode	Oxidation	-
Voltaic	< 0	>0	Cathode	Reduction	+
Electrolytic	> 0	< 0	Anode	Oxidation	+
Electrolytic	>0	< 0	Cathode	Reduction	-

Electrolysis

Electrical Work

- In an electrolytic cell an external source of energy is required for the reaction to proceed.
- In order to drive the nonspontaneous reaction the external emf must be greater than E_{cell} .
- From physics: work has units watts:

1 W = 1 J/s.

· Electric ut 1 k

tilities use units of kilowatt-hours:
Wh =
$$(1000 \text{ W})(1 \text{ h}) \left(\frac{3600 \text{ s}}{1 \text{ h}}\right) \left(\frac{1 \text{ J/s}}{1 \text{ W}}\right)$$

= $3.6 \times 10^6 \text{ J}$.

- (therefore less energy) due to the ease of oxidation of aluminum in the presence of crvolite.
- D. water is easier to oxidize than aluminum, so it would react first at a lower voltage.

