

Information contained in an NMR spectrum includes:

1. number of signals

- their intensity (as measured by area under peak)
- 3. splitting pattern (multiplicity)

protons that have different chemical shifts are chemically nonequivalent

exist in different molecular environment

Chemically equivalent protons

are in identical environments

have same chemical shift

replacement test: replacement by some arbitrary "test group" generates same compound

► H₃CCH₂CH₃ ←

chemically equivalen

Spin-Spin Splitting in NMR Spectroscopy

not all peaks are singlets signals can be split by coupling of nuclear spins

coupling constant (²J or ³J) is independent of field strength

For simple cases, the multiplicity of a signal for a particular proton is equal to the number of equivalent vicinal protons + 1.

Table						
Splitting Patterns of Common Multiplets						
Number of equivalent protons to which H is coupled	Appearance of multiplet	Intensities of lines in multiplet				
1	Doublet	1:1				
2	Triplet	1:2:1				
3	Quartet	1:3:3:1				
4	Pentet	1:4:6:4:1				
5	Sextet	1:5:10:10:5:1				
6	Septet	1:6:15:20:15:6:1				

 $(CH_3)_2CHX$ is characterized by a doubletseptet pattern (septet at lower field than the doublet)

Splitting patterns are not always symmetrical but lean in one direction or the other when "coupled".

 Pairs of Doublets

 $H \rightarrow C \rightarrow C \rightarrow H$

 Consider coupling between two vicinal protons.

 If the protons have different chemical shifts, each will split the signal of the other into a doublet.

Pairs of Doublets

Let $\Delta\nu$ be the difference in chemical shift in Hz between the two hydrogens.

Let *J* be the coupling constant between them in Hz.

The Difference between a Quartet and a Doublet of Doublets

a quartet relative intensities: 1:3:3:1

a doublet of doublets relative intensities: 1:1:1:1

remains a doublet, but becomes skewed. The outer lines decrease while the inner lines increase, causing the doublets to "lean" toward each other.

chemical shift and don't split each other. A single line is observed. The two doublets have collapsed to a singlet.

The chemical shift for O—H is variable (δ 0.5-5 ppm) and depends on temperature and concentration.

Splitting of the O—H proton is sometimes observed, but often is not. It usually appears as a broad peak.

Adding D_2O converts O-H to O-D. The O-H peak disappears.

