Names:

Thermochemistry / Equilibrium Workshop

- 1. Complete the blanks in the following statement. Significant quantities of both reactants and products are present at equilibrium for a reversible chemical reaction if ΔG° for that reaction is between _____ and ____.
- 2. Find the value of K_{sp} for iron(III) hydroxide from your textbook or other source, then determine the value of ΔG° for the solution reaction of this slightly soluble solid. How does this value compare to the value determined by using ΔG_{f}° values? Show your calcualtion.

	ΔG_{f}°
	(kJ/mol)
$Fe(OH)_3(s)$	-696.6
$Fe^{3+}(aq)$	-4.7
OH ⁻ (aq)	-157.2

3. One of the reaction steps for the metabolism of glucose in animals is not spontaneous:

2-phosphoglycerate \rightarrow phosphoenolpyruvate $\Delta G^{\circ} = 1.7 \text{ kJ/mol}$

(The prime indicates biochemistry standard state, which is the same as chemistry standard state except that biochemistry uses pH = 7.0 as a condition.) Will this reaction take place in a cell where [2-phosphoglycerate] = 2.3×10^{-4} M and [phosphoenolpyruvate] = 8.4×10^{-5} M? Show your calculation and explain your answer.

4. Most of the direct energy needs of a cell are provided by the reaction of adenosine 5'triphosphate (ATP) to form adenosine 5'-diphosphate (ADP) and hydrogen phosphate ion (P_i):

$$ATP \rightarrow ADP + P_i$$

 $\Delta G^{\circ} = -30.0 \text{ kJ/mol}$ for this reaction. What is ΔG when the concentrations in a cell are $[ATP] = 3.2 \times 10^{-3} \text{ M}$, $[ADP] = 1.4 \times 10^{-3} \text{ M}$, and $[P_i] = 5.0 \times 10^{-3} \text{ M}$ and the cell is @ $37^{\circ}C$? Show your calculation.

If you are ill with a fever of 39.5 °C, what is cellular free energy output having the same concentrations? Show your calculation.