<i>Name(s)</i> :	Sec
Chem 227/ Dr. Rusay	

Postlab: Synthesis of DEET NMR: Resonance/ Rotations/ Conformations

1. Using the *NMRs* that were provided. Consider the ¹H *NMR* data and which protons are chemically equivalent. Complete the two DEET resonance structures shown below, which will be used to explain the *NMR*. Number the chemically equivalent protons in the structures, predict the theoretical signal splitting, and assign the peaks in the spectrum to their chemical shifts in the table below.

¹ H (ppm)	peak splitting	peak assignment #

2. What are the relative percentages of **A** and **B** for the two respective resonance forms in the NMR mixture? Show your calculation and briefly explain your reasoning.

4. If the proton spectra (high temperature and low temperature) were recorded on DVC's 6 NMR, what would be the expected change in the <i>NMR</i> ? Briefly describe your reasoning that the chemical shifts from the low temperature 300 MHz <i>NMR</i> would be the same in of the 60 MHz spectrum.	vould ically orded
	assume
5. Consider only the ethyl groups in the ¹³ C NMR. Is the same conformational/rotational N phenomena observed as in the ¹ H NMR? Provide a detailed explanation citing chemical from the ¹³ C NMR for your answer.	IMR shift data