Sec. _____

Names: Chem 227 / Dr. Rusay

¹³C NMR Spectrosopy: Interpretation / Prediction & Reactions Lab Worksheet Refer to: <u>http://chemconnections.org/organic/chem227/IR-NMR/IR-MS-NMR-09.html</u> (Part IV)

Provide structures and ¹³C NMR data supporting each respective structure with peak assignments.

Unknown's Structure and labeled carbon atoms	Provide chemical shifts (δ ppm), and respective splitting patterns: singlet (s), doublet (d), triplet (t), quartet (q) for each ^{13}C signal.
example: a b CH₃CH₂OH	$a \delta = 18.13 \ (q)$ $b \delta = 57.79 \ (t)$
UNKNOWN A	
UNKNOWN B	
UNKNOWN C	

UNKNOWN D	
UNKNOWN E	
UNKNOWN F	
UNKNOWN G	
UNKNOWN H	
UNKNOWN I	

1) Provide reagents for the following reduction:

Identify the carbons in the reactant that are equivalent, label them as a, b, c, etc.; complete the table with their respective estimated chemical shifts and splitting patterns: singlet (s), doublet (d), triplet (t) or quartet (q) that are determined from decoupling experiments. Repeat the process for the product.

REACTANT		PRODUCT			
Carbon(s)	δ ppm	Splitting	Carbon(s)	δ ppm	Splitting

2) Provide reagents for the following oxidation:

Identify the carbons in the reactant that are equivalent, label them as a, b, etc.; complete the table with their respective estimated chemical shifts and splitting patterns: singlet (s), doublet (d), triplet (t) or quartet (q). Repeat the process with the product.

REACTANT			PRODUCT		
Carbon(s)	δ ppm	Splitting	Carbon(s)	δ ppm	Splitting

3) Provide appropriate reagent(s):

Identify the respective carbons in the reactant that have identical chemical shifts, label them as a, b, c, etc.; complete the table with their respective estimated chemical shifts and splitting patterns: singlet (s), doublet (d), triplet (t), quartet (q) or multiplet (m). Repeat for the product.

REACTANT		PRODUCT			
Carbon(s)	δ ppm	Splitting	Carbon(s)	δ ppm	Splitting

4) A DVC summer research student intern attempted to reduce 2-octanone with lithium aluminum hydride. The following ¹³C NMR data was obtained.

14.10	(q)
22.68	(t)
23.45	(t)
25.88	(t)
29.48	(t)
31.98	(q)
39.49	(t)
68.03	(d)

Draw the structure of the expected product and explain whether the reduction was successful based on the $^{13}\mathrm{C}$ NMR data.

Structure:	Explanation:

5) Run the ¹³C NMR of your individual unknown sample that was used in Part III. Using all of the previous spectroscopic and molecular data, draw a proposed structure for the unknown. Identify the respective carbon atoms in the structure that produce the same signal: *a*, *b*, *c*, etc.. as in the example for ethanol on the first page. Complete the table by correlating the carbon atoms with the observed chemical shift.

Student Name:	Student Name:
Unknown #:	Unknown #:
Structure:	Structure:

Carbon(s)	δ ppm	Carbon(s)	δ ppm

Student Name:	Student Name:
Unknown #:	Unknown #:

Structure:	Structure:

Carbon(s)	δ ppm	Carbon(s)	δ ppm