¹³C NMR Spectroscopy

¹H and ¹³C NMR compared:

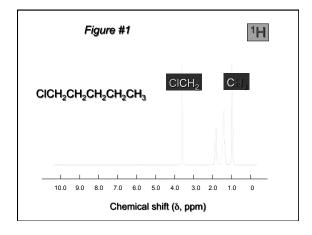
both give us information about the number of chemically nonequivalent nuclei (nonequivalent hydrogens or nonequivalent carbons)

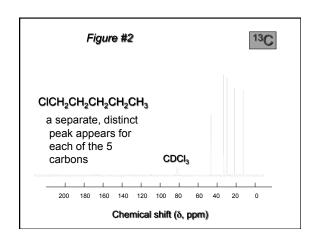
both give us information about the environment of the nuclei (hybridization state, attached atoms, etc.)

FT-NMR techniques are standard practice for ¹³C NMR

¹H and ¹³C NMR compared:

¹³C requires FT-NMR because the signal for a carbon atom is 10⁻⁴ times weaker than the signal for a hydrogen atom


a signal for a ¹³C nucleus is only about 1% as intense as that for ¹H because of the magnetic properties of the nuclei, and


at the "natural abundance" level only 1.1% of all the C atoms in a sample are ¹³C (most are ¹²C)

¹H and ¹³C NMR compared:

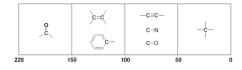
¹³C signals are spread over a much wider range than ¹H signals making it easier to identify and count individual nuclei

Figure #1 shows the ¹H NMR spectrum of 1 -chloropentane; Figure #2 shows the ¹³C spectrum. It is much easier to identify the compound as 1-chloropentane by its ¹³C spectrum than by its ¹H spectrum.

Question

- How many signals would you expect to see in the ¹³C-NMR spectrum of m -chloroanisole?
- A)
- B) 5
- C) 6
- D)

Question


· Which compound has the most signals in its ¹³C-NMR spectrum?

¹³C Chemical Shifts

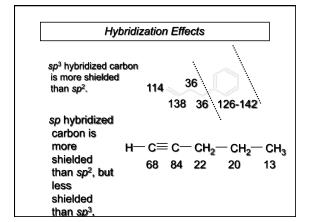
are measured in ppm (δ) from the carbons of TMS ¹³C Chemical shifts are most affected by:

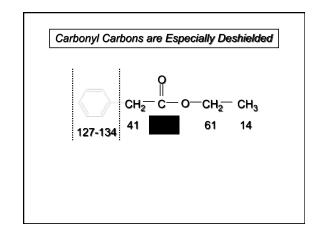
- · hybridization state of carbon
- electronegativity of groups attached to carbon
- electronegativity has an even greater effect on ¹³C chemical shifts than it does on ¹H chemical shifts.

Question

Predict the number of signals and location of each signal in 13C NMR for the following.

- A: Number of signals
 B: Number of signals below 50 ppm
 C: Number of signals between 50 and 100 ppm
- D: Number of signals between 100 and 150 ppm
- E: Number of signals above 150 ppm
 - A = 7; B = 3; C = 1; D = 1; E = 3 A = 7; B = 4; C = 0; D = 3; E = 2


 - A = 7; B = 3; C = 1; D = 2; E = 2 A = 8; B = 4; C = 0; D = 1; E = 3 A = 8; B = 4; C = 1; D = 2; E = 1


Types of Carbons	;
------------------	---

	Classification	Chemical shift, δ		
		¹H	¹³ C	
CH₄		0.2	-2	
CH₃CH₃	primary	0.9	8	
CH ₃ CH ₂ CH ₃	secondary	1.3	16	
(CH ₃) ₃ CH	tertiary	1.7	25	
(CH ₃) ₄ C	quaternary		28	

Replacing H with C (more electronegative) deshields C to which it is attached.

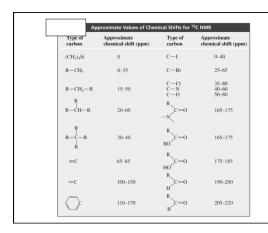
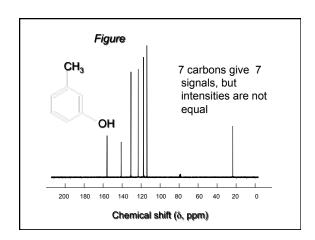

Electronegativity Effects on CH₃ Chemical shift, $\boldsymbol{\delta}$ 13C ¹H CH₄ 0.2 -2 CH₃NH₂ 2.5 27 CH₃OH 3.4 50 CH₃F 4.3 75

Table			
Type of carbon	Chemical shift (δ), ppm	Type of carbon	Chemical shift (δ), ppm
RCH ₃	0-35	RC≡CR	65-90
R ₂ CH ₂	15-40	R ₂ C=CR	2 100-150
R₃CH	25-50		
R ₄ C	30-40		110-175

Table			
Type of carbon	Chemical shift (δ), ppm	Type of carbon	Chemical shift (δ), ppm
RCH₂Br	20-40	RC≡N	110-125
RCH₂CI	25-50		
RCH ₂ NH ₂	35-50	RCOR	160-185
RCH₂OH	50-65	9	
RCH₂OR	50-65	RCR	190-220



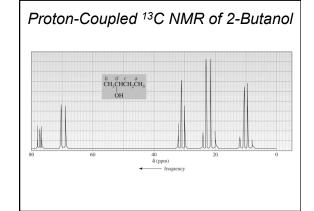
Question

- In the ¹³C-NMR spectrum 1,2,3,5 -tetramethylbenzene, how many peaks are **more shielded** than δ 80 ppm?
- A) 1
- B) 2
- C) 3
- D) 4

¹³C NMR and Peak Intensities

Pulse-FT NMR distorts intensities of signals. Therefore, peak heights and areas can be deceptive.

¹³C—H Coupling


Peaks in a ¹³C NMR spectrum are typically singlets

¹³C—¹³C splitting is not seen because the probability of two ¹³C nuclei being in the same molecule is very small.

¹³C—¹H splitting is not seen because spectrum is measured under conditions that suppress this splitting (*broadband decoupling*).

DEPT 13C NMR Spectra

- DISTORTIONLESS ENHANCEMENT BY POLARIZATION TRANSFER (DEPT) ¹³C NMR provides information the number of hydrogen atoms attached to each carbon.
- Full decoupled ¹³C spectrum shows all carbon peaks.
- In a DEPT-90, only CH signals appear.
- In a DEPT-135, ${\rm CH_3}$ and CH give (+) signals, and ${\rm CH_2}$ give (–) signals.

Question

- Which compound has four signals in its ¹³C-NMR spectrum: a singlet, a doublet, a triplet,
- and a quartet.

Proton-Decoupled ¹³C NMR of 2-Butanol

Using DEPT to Count the Hydrogens Attached to ¹³C

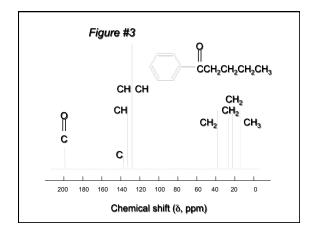
Distortionless Enhancement of Polarization Transfer (De-coupling)

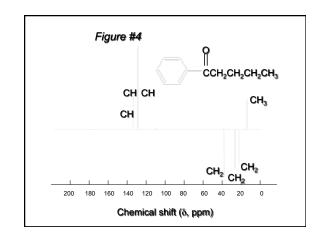
Measuring a ¹³C NMR spectrum involves

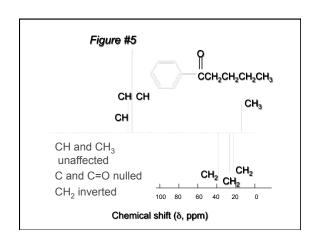
- Equilibration of the nuclei between the lower and higher spin states under the influence of a magnetic field
- 2. Application of a radiofrequency pulse to give an excess of nuclei in the higher spin state
- Acquisition of free-induction decay data during the time interval in which the equilibrium distribution of nuclear spins is restored
- 4. Mathematical manipulation (Fourier transform) of the data to plot a spectrum

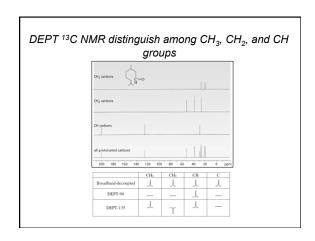
Measuring a ¹³C NMR spectrum involves

Steps 2 and 3 can be repeated hundreds of times to enhance the signal-noise ratio


- 2. Application of a radiofrequency pulse to give an excess of nuclei in the higher spin state
- Acquisition of free-induction decay data during the time interval in which the equilibrium distribution of nuclear spins is restored


Measuring a ¹³C NMR spectrum involves


In DEPT, a second transmitter irradiates ¹H during the sequence, which affects the appearance of the ¹³C spectrum.

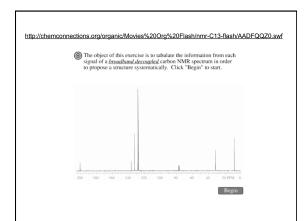

some ¹³C signals stay the same some ¹³C signals disappear some ¹³C signals are inverted

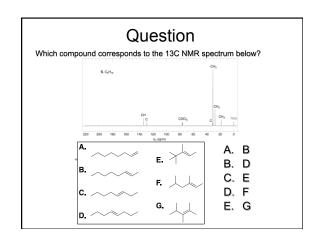
	CH ₃	CH ₂	CH	C
Broadband-decoupled	人	人	人	人
DEPT-90	_	_	人	_
DEPT-135	7	Υ	人	_

Question

- * Which isomer of $\rm C_6H_{14}$ is consistent with the following $^{13}\text{C-NMR}$ spectrum data? δ 11.1
- (CH₃); δ 18.4 (CH₃); δ 29.1 (CH₂); δ 36.4 (CH)
- A) *n*-hexane
- B) 2,3-dimethylbutane
- C) 2-methylpentane
- 3-methylpentane

Question


- Identify the $\rm C_4H_{10}O$ isomer on the basis of its $^{13}\text{C-NMR}$ spectrum data: δ 31.2 (CH₃, 3C); δ 68.9 (C, 1C)
- A) 2-butanol
- B) 2-methyl-2-propanol
- C) 1-butanol
- D) CH₃CH₂-O-CH₂CH₃


Question

- For an isomer of $\rm C_7H_5Cl_3O$: its IR spectrum indicates an ether function, the $^{1}{\rm H}$ NMR indicates one methyl group (CH₃-) bonded to an oxygen atom. How many isomers (total) are possible for the molecular formula?
- B) 3
- C) 4
- 5 D)

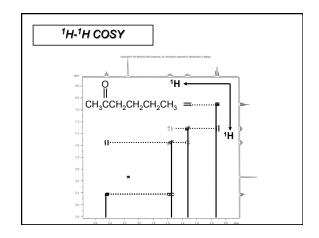
Question

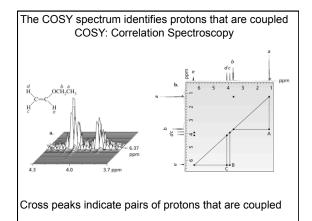
- Of the total number of possible isomers of $\mathrm{C_7H_5Cl_3O}$ they produce two $^{19}\mathrm{C}$ NMR sets: one set respectively has 5 peaks and the other 7 peaks in the decoupled $^{19}\mathrm{C}$ NMR spectra? Which tri-chloro substitution pattern would produce 5 peaks?
- B) 2,3,4
- C) 2,3,5
- D) 2,4,6
- 2.3.6

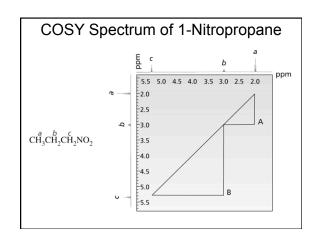
2D NMR Methods

•COSY: Carbon Hydrogen Correlation Spectroscopy
•HETCOR: Heteronuclear Chemical Shift Correlation
•NOESY: Nuclear Overhauser Effects Spectroscopy
•TROSY: Translation Relaxation Optimized Spectroscopy

2D NMR: COSY AND HETCOR

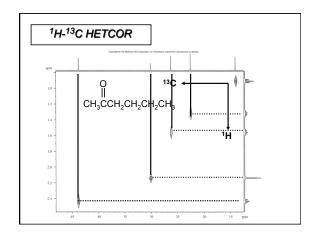

2D ¹H NMR Terminology


1D NMR = 1 frequency axis 2D NMR = 2 frequency axes


COSY = Correlated Spectroscopy

¹H-¹H COSY provides connectivity information by allowing one to identify spin-coupled protons.

x,y-coordinates of cross peaks are spin-coupled protons



HETCOR Carbon - Hydrogen

¹H and ¹³C spectra plotted separately on two frequency axes.

Coordinates of cross peak connect signal of carbon to protons that are bonded to it.

2D-NMR Methods

 NOESY: Nuclear Overhauser Effects Spectoscopy

• TROSY: Translation Relaxation Optimized Spectroscopy