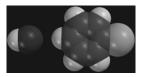
Nucleophilic Aromatic Substitution
Aryl Halides & Benzyne


Chlorobenzene is very unreactive with nucleophiles

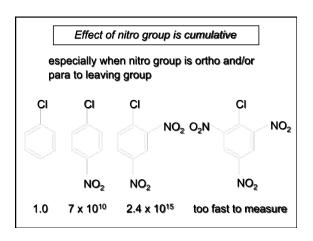
Not practical.

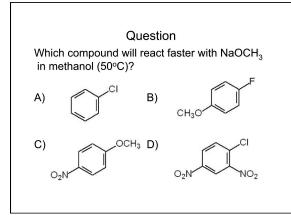
Not sufficiently reactive.

OH


Reasons for Low Reactivity

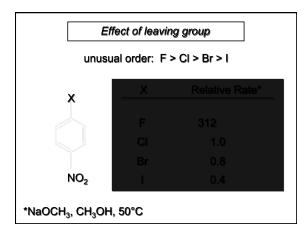
S_N1 not reasonable because:


- 1) C—CI bond is strong; therefore, ionization to a carbocation is a high-energy process
- 2) aryl cations are highly unstable


Reasons for Low Reactivity

 ${\sf S_N2}$ not reasonable because ring blocks attack of nucleophile from side opposite bond to leaving group

nitro-substituted aryl halides do undergo nucleophilic aromatic substitution readily CI OCH₃ + NaOCH₃ CH₃OH + NaCl NO₂ NO₂ (92%)



Kinetics

follows second-order rate law: rate = k [aryl halide][nucleophile]

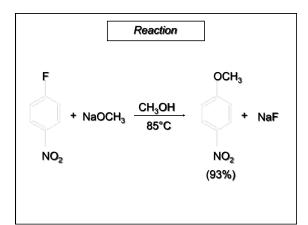
inference:

both the aryl halide and the nucleophile are involved in rate-determining step

General Conclusions About Mechanism

- •bimolecular rate-determining step in which nucleophile attacks aryl halide
- •rate-determining step precedes carbon-halogen bond cleavage
- •rate-determining transition state is stabilized by electron-withdrawing groups (such as NO₂)

The Addition-Elimination Mechanism of Nucleophilic Aromatic Substitution


Addition-Elimination Mechanism

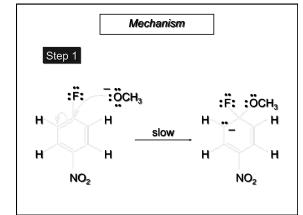
Two step mechanism:

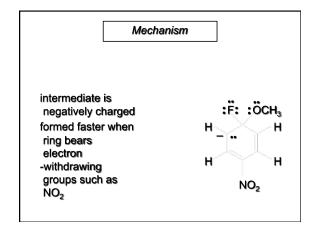
Step 1) nucleophile attacks aryl halide and bonds to the carbon that bears the halogen (slow: aromaticity of ring lost in this step)

Step 2) intermediate formed in first step loses halide

(fast: aromaticity of ring restored in this step)

Question


How many signals would be observed in the ¹H -NMR of the product isolated from the reaction of *p*-fluoronitrobenzene with potassium methoxide in methanol?


- A) 2
- B) 3
- C) 4
- D) 5

Question

Identify the rate law for the addition-elimination mechanism of nucleophilic aromatic substitution.

- A) Rate = [aryl halide]
- B) Rate = [aryl halide][nucleophile]
- C) Rate = [aryl halide][nucleophile]²
- D) Rate = [nucleophile]

Stabilization of Rate-Determining Intermediate by Nitro Group

Stabilization of Rate-Determining Intermediate by Nitro Group

Mechanism

Step 2

Mechanism

Step 2

Question

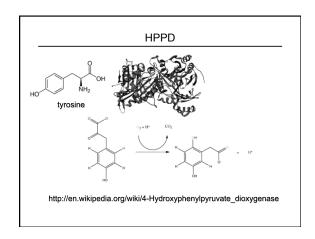
Which of the structures below is the most stable resonance structure for the reaction of *p* -fluoronitrobenzene with sodium methoxide?

- C) 3 only
- D) 1 and 2

Leaving Group Effects

F > CI > Br > I is unusual, but consistent with mechanism

carbon-halogen bond breaking does not occur until after the rate-determining step

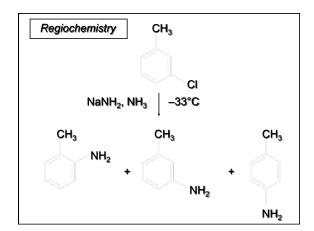

electronegative F stabilizes negatively charged intermediate

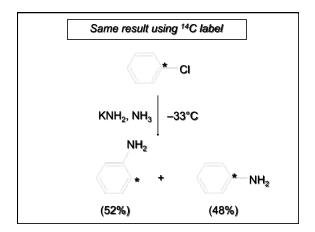
Question

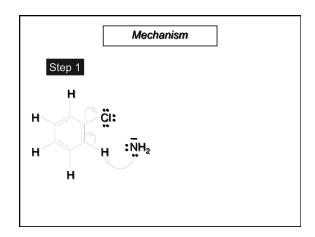
Which of the following compounds is the least reactive toward nucleophilic aromatic substitution?

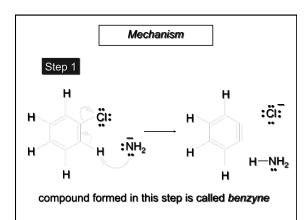
- A) 1-chloro-4-nitrobenzene
- B) 1-iodo-2-nitrobenzene
- C) 1-fluoro-4-nitrobenzene
- D) 1-bromo-3-nitrobenzene

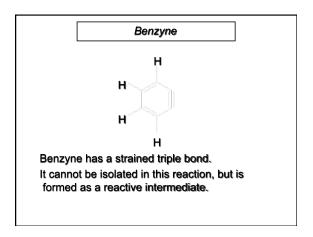
Nucleophilic Aromatic Substitution Reactions in Synthesis

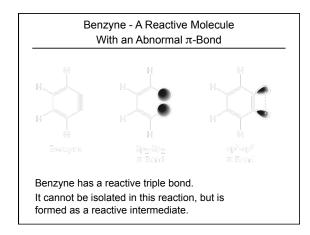

Inhibition of HPPD Hydroxyphenyl pyruvate dioxygenase SO₂CH₃ http://en.wikipedia.org/wiki/P-hydroxyphenylpyruvate_dioxygenase_inhibitor Synthetic Intermediate Triketones Continued OCH₂CH₃ SO₂CH₃

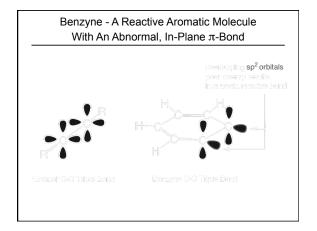

The Elimination-Addition Mechanism of Nucleophilic Aromatic Substitution:

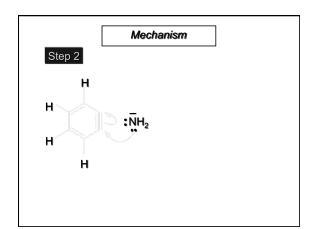

Benzyne

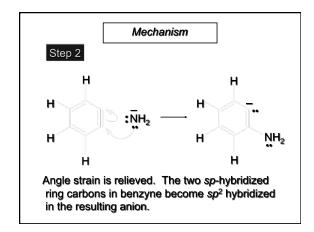

Regiochemistry

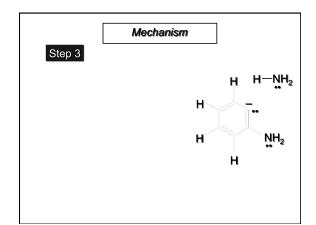

new substituent becomes attached to either the carbon that bore the leaving group or the carbon adjacent to it

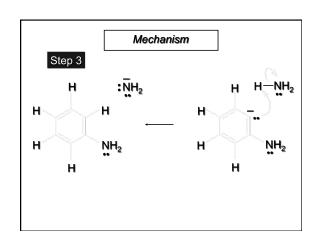










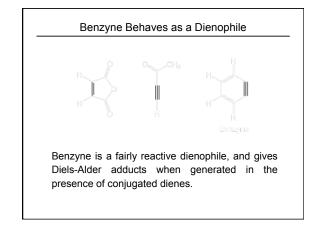


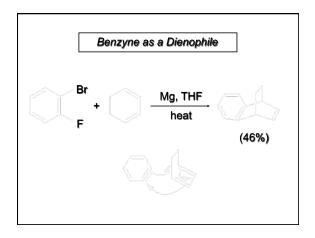
Question

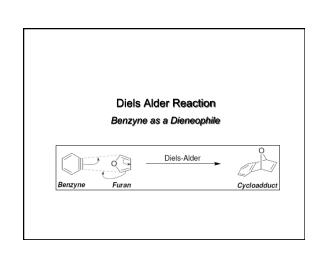
Which of the following compounds give a single benzyne intermediate on reaction with sodium amide?

- A) 1 only
- B) 1 and 3
- C) 3 only
- D) 1 and 2

Diels-Alder Reactions of Benzyne


Other Routes to Benzyne


Benzyne can be prepared as a reactive intermediate by methods other than treatment of chlorobenzene with strong bases.


Another method involves loss of fluoride ion from the Grignard reagent of 1-bromo-2 -fluorobenzene.

Benzyne as a Dienophile

Benzyne is a fairly reactive dienophile, and gives Diels-Alder adducts when generated in the presence of conjugated dienes.

